簡易檢索 / 詳目顯示

研究生: 梁祖瑞
Liang, Tsu-Jui
論文名稱: 雙面不對稱球體自組裝誘發之可逆螢光共振能量轉移效應
Reversible FRET Induced by the Self-assembly of Dye-functionalized Janus Particles
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 雙面不對稱球體可逆自組裝螢光共振能量轉移光致發光
外文關鍵詞: Janus particle, Self-assembly, Fluorescence Resonance Energy Transfer, Photoluminescence
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非對稱性球體的自組裝行為以及可逆的螢光共振能量轉移主要是經由本實驗室所製備出的螢光染料官能化的雙面不對稱球體來進行研究,雙面不對稱球體主要是以500奈米的二氧化矽球體為主體,經由表面改質的方法對其中一個半球表面進行氨基的改質,並在上面接上名為Marina Blue 的螢光染料。本實驗的主體“雙面不對稱球體”為次微米等級,其製備及特性分析均在過去有深入探討。另一方面同時購買了平均粒徑80奈米之表面羧酸化聚丙烯腈微珠作自發性自組裝,這些聚丙烯腈奈米微珠已經預先帶有Chromeon 470之螢光染料在其中,可以當作螢光共振能量轉移的受體物質,而Marina Blue 螢光染料扮演的是螢光共振能量轉移的供體。球體在水中的自組裝行為主要是由500奈米帶有氨基正電荷的雙面不對稱球體與80奈米帶有羧酸基負電荷的聚丙烯腈微珠進行自組裝。在自組裝後藉由動態光散射粒徑分析儀觀察粒徑大小的變化。藉由輸入365奈米Marina Blue雙面不對稱球體的激發波長,可以觀察到611奈米Chromeon 470奈米微珠所產生的發射波長,以此來證實螢光共振能量轉移的發生。接著調整不同比例的球體也同時會造成不同的螢光共振能量轉移效應,因此接著在可逆自組裝的研究中同時導入超音波處理來分離自組裝聚集,觀察可逆的粒子自組裝以及組裝的時間相關係數可以發現雙面不對稱球體的自組裝行為以及與自組裝相關的螢光共振能量轉移為一個與時間相關的粒徑變化以及螢光共振能量轉移。

    Fluorescence dye-functionalized Janus particles were synthesized for the asymmetric particle self-assembly and the reversible Forster Resonance Energy Transfer (FRET). A Janus particle cored with a 500 nm silica colloid was bi-functionalized with the amino-silane on one of its hemispheric surface and a fluorescence dye, Marina Blue, attached to this hemispheric surface. These Janus particles in the submicron scale were carefully fabricated and characterized, following the prior works. Commercially-available polyacrylonitrile (PAN) nanobeads with 80 nm in diameter and carboxylic surface-functionalities were employed as the self-assembly counterpart. These PAN nanobeads also contained a fluorescence dye, Chromeon 470, to be utilized as the FRET acceptor, while the Marina Blue Janus particles served as the FRET donor. Self-assembly of these two particles in an aqueous solution was performed by the positively-charged asymmetric 500 nm Janus particles and the negatively-charged 80 nm PAN nanobeads. The sizes of the assembled clusters were monitored by the dynamic light scattering (DLS). Successful FRET was confirmed by the 365 nm excitation to the Marina Blue Janus particles accompanied by the 611 nm emission of Chromeon 470 nanobeads. Variation of the particle ratios also resulted in the proportional FRET effects. Reversible particle self-assembly was also investigated by the introduction of ultrasonic treatment that separated the assembled clusters. Time-resolved FRET and DLS with the reversible particle self-assembly and the assembly correlation time revealed the asymmetric particle self-assembly from Janus particles and the assembly-dependent FRET performance.

    致謝 I 中文摘要 II Abstract III Table of Contents IV List of Illustrations VII Chapter 1. Introduction 1 1.1 Janus particles and asymmetric micro- and nano- materials 1 1.1.1 Janus-like Materials 2 1.1.2 Fabrications of Janus Particles 7 1.1.3 Application 19 1.2 Self-Assembly 23 1.2.1 Introduce of Self-Assembly 23 1.2.2 Models of Self-Assembly 26 Particles v.s.2-D surface 28 Particles v.s. particles 29 1.2.3 Applications of Self-Assembly 35 1.3 Förster resonance energy transfer 38 1.3.1 Mechanism 39 1.3.2 Applications 42 Chapter 2. Research Motivations 44 Chapter 3. Experimental 46 3.1 Chemicals 46 3.2 Instruments Used in the Material Fabrication 48 3.3 Preparations of Dye-functionalized Janus particles 50 3.3.1 Preparation of 500nm Silica Particle Solution 50 3.3.2 Electrospinning of PMMA/P4VP Blend Fibers 50 3.3.3 Dipping Process of 500nm Silica Particles 51 3.3.4 Heat Treatment Process (Thermal Embedding Process) 51 3.3.5 APS Modification Process 51 3.3.6 Polymer Fiber Dissolving 52 3.3.7 Dye Graft Process 53 3.4 Analytical Instruments 55 3.4.1 UV-vis Spectrometer (UV-vis) 55 3.4.2 Photoluminescence Spectroscopy (PL) 55 3.4.3 Scanning Electron Microscopy (SEM) 56 3.4.4 Particle Size Distribution(Dynamic light Scattering) 57 3.4.5 Zeta Potential Analyzer 57 Chapter 4. Result and Discussions 58 4.1 Dye Characterization 58 4.1.1 Marina Blue, Chromeon 470 nanobeads and their FRET 58 4.2 The FRET effect on the Dye solutions 63 4.2.1 The Concentration Effect on FRET (different Donor & Acceptor ratio) in the Dye Solution 63 4.3 The Characterization of Dye-functionalized Janus Particles 68 4.3.1 Amino Janus Particles 68 4.3.2 Dye-functionalization 72 4.3.3 Zeta Potential Analysis 73 4.4 The Self-Assembly Behaviors of Janus Particles and Carboxylic Nanobeads 73 4.5 FRET Effect of Assembled Particles 79 4.5.1 FRET of Dye-functionalized Janus Particles and Chromeon 470 nanobeads 79 4.5.2 The Re-assembly about Dye-functionalized Janus Particles and Chromeon 470 83 Chapter 5. Conclusions 87 Reference 88

    1. GENNES, P.-G. D., Nobel Lecture. Soft Matter 1991, 21 (7), 842-845.
    2. Janus God. http://thejanusprojectfilm.com/2014/who-is-janus-the-two-faced-roman-god/.
    3. Cho, I.; Lee, K.-W., Morphology of Latex Particles Formed by Poly(methy1 Methacrylate)-Seeded Emulsion Polymerization of Styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
    4. Casagrande, C.; FABRE, P.; RAPHAEL, E.; VEYSSIE, M., Janus Beads : Realization and Behaviour at Water/Oil Interfaces. EUROPHYSICS LETTERS 1989, 9 (3), 251-255.
    5. Walther, A.; Muller, A. H., Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical reviews 2013, 113 (7), 5194-261.
    6. Liu, Y.; Abetz, V.; ller, A. H. E. M., Janus Cylinders. Macromolecules 2003, 36 (21), 7894-898.
    7. Sokolovskaya, E.; Yoon, J.; Misra, A. C.; Brase, S.; Lahann, J., Controlled microstructuring of janus particles based on a multifunctional poly(ethylene glycol). Macromolecular rapid communications 2013, 34 (19), 1554-9.
    8. Lv, N.; Ma, Q.; Dong, X.; Wang, J.; Yu, W.; Liu, G., Flexible Janus Nanofibers: Facile Electrospinning Construction and Enhanced Luminescent-Electrical-Magnetic Trifunctionality. ChemPlusChem 2014, 79 (5), 690-697.
    9. Ruhland, T. M.; Groschel, A. H.; Walther, A.; Muller, A. H., Janus cylinders at liquid-liquid interfaces. Langmuir : the ACS journal of surfaces and colloids 2011, 27 (16), 9807-14.
    10. Andre, A. W. X.; Drechster, M.; Abetz, V.; Muller, A. H. E., Janus Discs. Journal of the American Chemical Society 2007, 27 (16), 9807-9814.
    11. Walther, A.; Drechsler, M.; Müller, A. H. E., Structures of amphiphilic Janus discs in aqueous media. Soft Matter 2009, 5 (2), 385.
    12. Chen, Q.; Li, Q.; Lin, J., Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Materials Chemistry and Physics 2011, 128 (3), 377-382.
    13. Wang, Y.; Xu, H.; Qiang, W.; Gu, H.; Shi, D., Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. Journal of Nanomaterials 2009, 2009, 1-5.
    14. Parvole, J.; Chaduc, I.; Ako, K.; Spalla, O.; Thill, A.; Ravaine, S.; Duguet, E.; Lansalot, M.; Bourgeat-Lami, E., Efficient Synthesis of Snowman- and Dumbbell-like Silica/Polymer Anisotropic Heterodimers through Emulsion Polymerization Using a Surface-Anchored Cationic Initiator. Macromolecules 2012, 45 (17), 7009-7018.
    15. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D.-Y., A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced materials 2004, 16 (3), 274-277.
    16. Xu, K.; Xu, J.-h.; Lu, Y.-c.; Luo, G.-S., A Novel Method of Fabricating, Adjusting, and Optimizing Polystyrene Colloidal Crystal Nonspherical Microparticles from Gas–Water Janus Droplets in a Double Coaxial Microfluidic Device. Crystal Growth & Design 2014, 14 (2), 401-405.
    17. Suzuki, D.; Kobayashi, C., Raspberry-shaped composite microgel synthesis by seeded emulsion polymerization with hydrogel particles. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (24), 7085-92.
    18. McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and multiregion janus particles with tunable optical properties. Nano letters 2010, 10 (2), 603-9.
    19. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
    20. Fujii, S.; Yokoyama, Y.; Miyanari, Y.; Shiono, T.; Ito, M.; Yusa, S.; Nakamura, Y., Micrometer-sized gold-silica Janus particles as particulate emulsifiers. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (18), 5457-65.
    21. Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K.-J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches. Macromolecules 2008, 41 (24), 9669-9676.
    22. Wang, Y.; Hernandez, R. M.; Bartlett, D. J.; Jr., J. M. B.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (25), 10451-10456.
    23. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System. Advanced materials 2006, 18 (9), 1152-1156.
    24. Rodríguez-Fernández, D.; Liz-Marzán, L. M., Metallic Janus and Patchy Particles. Particle & Particle Systems Characterization 2013, 30 (1), 46-60.
    25. Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A., Janus colloidal particles: preparation, properties, and biomedical applications. ACS applied materials & interfaces 2013, 5 (6), 1857-69.
    26. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
    27. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science 2007, 32 (1), 93-146.
    28. HAWKER, C. J., "Living"Free Radical Polymerization: A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of chemical research 1997, 3 (9), 373-382.
    29. Erhardt, R.; Bo1ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Muller, A. H. E., Janus Micelles. macromolecules 2001, 34 (4), 1069-1075.
    30. Walther, A.; Müller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663.
    31. Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H., Scalable Routes to Janus Au-SiO2 and Ternary Ag-Au-SiO2 Nanoparticles. chemistry of Materials 2010, 22 (13), 3826-3828.
    32. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745.
    33. Hwang, S.; Roh, K. H.; Lim, D. W.; Wang, G.; Uher, C.; Lahann, J., Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. Physical chemistry chemical physics : PCCP 2010, 12 (38), 11894-9.
    34. Hong, L.; Jiang, S.; Granick, S., Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (23), 9495-9499.
    35. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    36. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Advanced materials 2005, 17 (16), 2014-2018.
    37. Yang, S.; Hricko, P. J.; Huang, P. H.; Li, S.; Zhao, Y.; Xie, Y.; Guo, F.; Wang, L.; Huang, T. J., Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth. Journal of materials chemistry. C, Materials for optical and electronic devices 2014, 2014 (3), 542-547.
    38. Cayre, O. J.; Paunov, V. N., Contact Angles of Colloid Silica and Gold Particles at Air-Water and Oil-Water Interfaces Determined with the Gel Trapping Technique. Langmuir : the ACS journal of surfaces and colloids 2004, 22 (22), 9594-9599.
    39. Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Advanced materials 2004, 16 (9), 788-791.
    40. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (20), 8281-8284.
    41. He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. J Colloid Interface Sci 2007, 306 (2), 296-9.
    42. Binks, B. P.; Fletcher, P. D. I., Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" particle. Langmuir : the ACS journal of surfaces and colloids 2001, 17 (16), 4708-4710.
    43. Zhu, M.; Li, Y.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z.; Zhu, S.; Ming, N., Controlled Strain on a Double-Templated Textured Polymer Film: a New Approach to Patterned Surfaces with Bravais Lattices and Chains. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (17), 7248-7253.
    44. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS applied materials & interfaces 2010, 2 (11), 3185-91.
    45. Chao, Y. C.; Huang, W. H.; Cheng, K. M.; Kuo, C., Assembly and manipulation of Fe(3)O(4)/coumarin bifunctionalized submicrometer Janus particles. ACS applied materials & interfaces 2014, 6 (6), 4338-45.
    46. Walther, A.; Matussek, K.; Muller, A. H. E., Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles. ACS Nano 2008, 2 (6), 1167-1178.
    47. Howse, J.; Jones, R.; Ryan, A.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters 2007, 99 (4).
    48. Alexeev, A.; Uspal, W. E.; Balazs, A. C., Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. ACS Nano 2008, 2 (6), 1117-1122.
    49. Yoshida, M.; Lahann, J., Smart Nanomaterials. ACS Nano 2008, 2 (6), 1101-1107.
    50. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures. Nature materials 2007, 6 (8), 557-562.
    51. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). Journal of Magnetism and Magnetic Materials 2005, 293 (1), 663-670.
    52. Anthony, S. M.; Kim, M.; Granick, S., Single-Particle Tracking of Janus Colloids in Close Proximity. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (13), 6557-6561.
    53. Honegger, T.; Lecarme, O.; Berton, K.; Peyrade, D., 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectronic Engineering 2010, 87 (5-8), 756-759.
    54. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. The Journal of chemical physics 2007, 127 (16), 161102.
    55. Jiang, S.; Granick, S., Controlling the Geometry (Janus Balance) of Amphiphilic Colloidal
    Particles. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (6), 2438-2445.
    56. Creighton, M. A.; Ohata, Y.; Miyawaki, J.; Bose, A.; Hurt, R. H., Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (13), 3687-96.
    57. Zhang, M.; Ngo, T. H.; Rabiah, N. I.; Otanicar, T. P.; Phelan, P. E.; Swaminathan, R.; Dai, L. L., Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (1), 75-82.
    58. Xu, F.; Fang, Z.; Yang, D.; Gao, Y.; Li, H.; Chen, D., Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS applied materials & interfaces 2014, 6 (9), 6717-23.
    59. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969.
    60. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
    61. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-21.
    62. Alberts, B.; Bray, D.; Lewis, J.; Raft, M.; Roberts, K.; Watson, J. D., Molecular Biology of the Cell. Garland: New York, 1994. 1994.
    63. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the Solid State with 2-Benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
    64. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-22.
    65. Rosa, C. D.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405 (6785), 433-437.
    66. Whitesides, G. M., Self-Assembling Materials. SCIENTIFIC AMERICAN 1995, 273 (3), 146-149.
    67. Fenyves, R.; Schmutz, M.; Horner, I. J.; Bright, F. V.; Rzayev, J., Aqueous self-assembly of giant bottlebrush block copolymer surfactants as shape-tunable building blocks. Journal of the American Chemical Society 2014, 136 (21), 7762-70.
    68. Cheng, Y. J.; Wolkenhauer, M.; Bumbu, G. G.; Gutmann, J. S., A facile route to reassemble titania nanoparticles into ordered chain-like networks on substrate. Macromolecular rapid communications 2012, 33 (3), 218-24.
    69. Meshot, E. R.; Patel, K. D.; Tawfick, S.; Juggernauth, K. A.; Bedewy, M.; Verploegen, E. A.; De Volder, M. F. L.; Hart, A. J., Photoconductive Hybrid Films via Directional Self-Assembly of C60 on Aligned Carbon Nanotubes. Advanced Functional Materials 2012, 22 (3), 577-584.
    70. Olenyuk, B.; Whiteford, J. A.; tter, A. F.; Stang, P. J., Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 1999, 398 (6730), 796-799.
    71. Lehn, J.-M., Supramolecular chemistry and chemical synthesis. From molecular interactions to self-assembly. NATO ASI series. Series E, Applied science 1996, 320 (Chemical Synthesis), 511.
    72. Yi, C.; Sun, J.; Zhao, D.; Hu, Q.; Liu, X.; Jiang, M., Influence of Photo-Cross-Linking on Emulsifying Performance of the Self-Assemblies of Poly(7-(4-vinylbenzyloxyl)-4-methylcoumarin-co-acrylic acid). Langmuir : the ACS journal of surfaces and colloids 2014, 30 (23), 6669-77.
    73. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of Amphiphilic Colloidal Spheres. Langmuir : the ACS journal of surfaces and colloids 2005, 24 (3), 621-625.
    74. Sashuk, V.; Winkler, K.; Żywociński, A.; Wojciechowski, T.; Górecka, E.; Fiałkowski, M., Nanoparticles in a Capillary Trap: Dynamic Self-Assembly at Fluid Interfaces. ACS Nano 2013, 7 (10), 8833-8839.
    75. Olson, M. A.; Coskun, A.; Klajn, R.; Fang, L.; Dey, S. K.; Browne, K. P.; Grzybowski, B. A.; Stoddart, F., Assembly of Polygonal Nanoparticle Clusters Directed by Reversible Noncovalent Bonding Interactions. Nano letters 2009, 9 (9), 3185-3190.
    76. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M., Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404 (6779), 746-748.
    77. Sun, Z.; Ni, W.; Yang, Z.; Kou, X.; Li, L.; Wang, J., pH-Controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4 (9), 1287-92.
    78. Si, S.; Raula, M.; Paira, T. K.; Mandal, T. K., Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. Chemphyschem : a European journal of chemical physics and physical chemistry 2008, 9 (11), 1578-84.
    79. Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov, S. K.; Campbell, C. J.; Grzybowski, B. A., Principles and Implementations of Dissipative (Dynamic) Self-Assembly. J. Phys. Chem. B 2006, 110 (6), 2482-2496.
    80. Mirkin, C. A.; Letsinger, R. L.; Music, R. C.; Storhoff, J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382 (6592), 607-609.
    81. Glotzer, S. C., Some assembly required. Science 2004, 306 (5695), 419-420.
    82. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Advanced materials 2000, 12 (10), 693-713.
    83. Whitesides, G., What Will Chemistry Do in the Next Twenty Years? Angew. Chem.-Int. Edit. Engl. 1990, 29 (11), 1209-1218.
    84. Whitesides, G. M., The Once Future Nanomachine. SCIENTIFIC AMERICAN 2001, 285 (3), 78-83.
    85. Madou, M., Fundamentals of Microfabrication. 1997.
    86. Fearing, K. F. B. R. S.; Goldberg, K. Y., The Handbook of Industrial Robotics. 1999.
    87. Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J., Directed Assembly of Nanoparticles onto Polymer-Imprinted or Chemically Patterned Templates Fabricated by Nanoimprint Lithography. Advanced materials 2005, 17 (22), 2718-2723.
    88. Jonas, U.; Campo, A.; Kruger, C.; Glasser, G.; Boos, D., Colloidal assemblies on patterned silane layers. Proceedings of the National Academy of Sciences 2002, 99 (8), 5034-5039.
    89. Chen, K. M.; Jiang, X.; Kimerling, L. C.; Hammond, P. T., Selective Self-Organization of Colloids on Patterned Polyelectrolyte Templates. Langmuir : the ACS journal of surfaces and colloids 2000, 16 (20), 7825-7834.
    90. Bianchi, E.; Likos, C. N.; Kahl, G., Tunable assembly of heterogeneously charged colloids. Nano letters 2014, 14 (6), 3412-8.
    91. Dong, B.; Guo, R.; Yan, L.-T., Coassembly of Janus Nanoparticles in Asymmetric Diblock Copolymer Scaffolds: Unconventional Entropy Effect and Role of Interfacial Topology. Macromolecules 2014.
    92. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; rter, W. A.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M.; Barth, J. V., Chiral kagome lattice from simple ditopic molecular bricks. Journal of the American Chemical Society 2008, 130 (25), 11778-11782.
    93. Liu, H.; Kumar, S. K.; Douglas, J. F., Self-Assembly-Induced Protein Crystallization. Physical Review Letters 2009, 103 (1), 018101.
    94. Giacometti, A.; Lado, F.; Largo, J.; Pastore, G.; Sciortino, F., Effects of patch size and number within a simple model of patchy colloids. The Journal of chemical physics 2010, 132 (17), -.
    95. Doppelbauer, G.; Bianchi, E.; Kahl1, G., Self-assembly scenarios of patchy colloidal particles in two dimensions. J. Phys.-Condes. Matter 2010, 22 (10), 1-12.
    96. Chen, Q.; Whitmer, J. K.; Jiang, S.; Bae, S. C.; Luijten, E.; Granick, S., Supracolloidal Reaction Kinetics of Janus Spheres. Science 2011, 331 (6014), 199-202.
    97. Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469 (7330), 381-384.
    98. Chen, Q.; Diesel, E.; Whitmer, J. K.; Bae, S. C.; Luijten, E.; Granick, S., Triblock Colloids for Directed Self-Assembly. Journal of the American Chemical Society 2011, 133 (20), 7725-7727.
    99. Wilber, A. W.; Doye, J. P. K.; Louis, A. A.; Noya, E. G.; Miller, M. A.; Wong, P., Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. Journal of Chemical Physics 2007, 127 (8).
    100. Yong, X.; Crabb, E. J.; Moellers, N. M.; Balazs, A. C., Self-healing vesicles deposit lipid-coated Janus particles into nanoscopic trenches. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (52), 16066-74.
    101. Whitelam, S.; Bon, S. A. F., Self-assembly of amphiphilic peanut-shaped nanoparticles. The Journal of chemical physics 2010, 132 (7), -.
    102. Miller, W. L.; Cacciuto, A., Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles (vol 80, 021404, 2009). Physical Review E 2009, 80 (2).
    103. Gangwal, S.; Cayre, O. J.; Bazant, M. Z.; Velev, O. D., Induced-charge electrophoresis of metallodielectric particles. Physical Review Letters 2008, 100 (5).
    104. Kinnunen, P.; Sinn, I.; McNaughton, B. H.; Kopelman, R., High frequency asynchronous magnetic bead rotation for improved biosensors. Applied Physics Letters 2010, 97 (22).
    105. McNaughton, B. H.; Kinnunen, P.; Smith, R. G.; Pei, S. N.; Torres-Isea, R.; Kopelman, R.; Clarke, R., Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. Journal of Magnetism and Magnetic Materials 2009, 321 (10), 1648-1652.
    106. McNaughton, B. H.; Agayan, R. R.; Wang, J. X.; Kopelman, R., Physiochemical microparticle sensors based on nonlinear magnetic oscillations. Sensors and Actuators B-Chemical 2007, 121 (1), 330-340.
    107. Isojima, T.; Suh, S. K.; Sande, J. B. V.; Hatton, T. A., Controlled Assembly of Nanoparticle Structures: Spherical and Toroidal Superlattices and Nanoparticle-Coated Polymeric Beads. Langmuir : the ACS journal of surfaces and colloids 2009, 25 (14), 8292-8298.
    108. Li, F.; Josephson, D. P.; Stein, A., Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie-International Edition 2011, 50 (2), 360-388.
    109. Jain, S.; Gupta, S., Dielectrophoretic coassembly of binary colloidal mixtures in AC electric fields. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (52), 16105-12.
    110. Obeid, R.; Park, J.-Y.; Advincula, R. C.; Winnik, F. M., Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates. Journal of Colloid and Interface Science 2009, 340 (2), 142-152.
    111. Bong, K. W.; Chapin, S. C.; Doyle, P. S., Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection. Langmuir : the ACS journal of surfaces and colloids 2010, 26 (11), 8008-8014.
    112. Ren, B.; Ruditskiy, A.; Song, J. H.; Kretzschmar, I., Assembly Behavior of Iron Oxide-Capped Janus Particles in a Magnetic Field. Langmuir : the ACS journal of surfaces and colloids 2012, 28 (2), 1149-1156.
    113. Ren, B.; Kretzschmar, I., Viscosity-dependent Janus particle chain dynamics. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (48), 14779-86.
    114. Tierno, P., Magnetic Assembly and Annealing of Colloidal Lattices and Superlattices. Langmuir : the ACS journal of surfaces and colloids 2014.
    115. Muller, K.; Osterman, N.; Babic, D.; Likos, C. N.; Dobnikar, J.; Nikoubashman, A., Pattern formation and coarse-graining in two-dimensional colloids driven by multiaxial magnetic fields. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (18), 5088-96.
    116. Kang, D. H.; Jung, H. S.; Ahn, N.; Yang, S. M.; Seo, S.; Suh, K. Y.; Chang, P. S.; Jeon, N. L.; Kim, J.; Kim, K., Janus-Compartmental Alginate Microbeads Having Polydiacetylene Liposomes and Magnetic Nanoparticles for Visual Lead(II) Detection. ACS applied materials & interfaces 2014.
    117. Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional Superparamagnetic Janus Particles. Langmuir : the ACS journal of surfaces and colloids 2010, 26 (6), 4281-4287.
    118. Kim, S.-H.; Sim, J. Y.; Lim, J.-M.; Yang, S.-M., Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion. Angewandte Chemie-International Edition 2010, 49 (22), 3786-3790.
    119. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
    120. Tan, L. H.; Xing, H.; Lu, Y., DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles. Accounts of chemical research 2014.
    121. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
    122. Lehmann, O.; Stuke, M., LASER-DRIVEN MOVEMENT OF 3-DIMENSIONAL MICROSTRUCTURES GENERATED BY LASER RAPID PROTOTYPING. Science 1995, 270 (5242), 1644-1646.
    123. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Advanced materials 2008, 20 (24), 4734-+.
    124. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437 (1-2), 55-75.
    125. Förster, T., Delocalized excitation and excitation transfer. In Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals 3, Sinanoglu, O., Ed. Academic Press: New York and London. 1965.
    126. Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chemical reviews 2014, 114 (12), 6130-6178.
    127. Algar, W. R.; Kim, H.; Medintz, I. L.; Hildebrandt, N., Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coordination Chemistry Reviews 2014, 263, 65-85.
    128. Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society 1950, 9 (0), 14-19.
    129. Hussain, S. A., An Introduction to Fluorescence Resonance Energy Transfer (FRET).
    130. Schobel, U.; Egelhaaf, H.-J.; Brecht, A.; Oelkrug, D.; Gauglitz, G., New Donor-Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chem. 1999, 10, 1107-1114.
    131. Lohse, M. J.; Nuber, S.; Hoffmann, C., Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2), 299-336.
    132. Kurokawa, K.; Takaya, A.; Terai, K.; Fujioka, A.; Matsuda, M., Visualizing the signal transduction pathways in living cells with GFP-based FRET probes. Acta Histochem Cytochem 2004, 34.
    133. Terai, K.; Matsuda, M., Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO reports 2005, 6 (3), 251-255.
    134. Ryan, S. T. J.; Del Barrio, J.; Ghosh, I.; Biedermann, F.; Lazar, A. I.; Lan, Y.; Coulston, R. J.; Nau, W. M.; Scherman, O. A., Efficient Host–Guest Energy Transfer in Polycationic Cyclophane–Perylene Diimide Complexes in Water. Journal of the American Chemical Society 2014, 136 (25), 9053-9060.
    135. Day, R. N.; Davidson, M. W., Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. Bioessays 2012, 34 (5), 341-350.
    136. Pfeiffer, H. G.; Liebhafsky, H. A., The origins of Beer's Law. Journal of Chemical Education 1951, 28 (3), 123-125.

    下載圖示 校內:2024-08-28公開
    校外:2024-08-28公開
    QR CODE