簡易檢索 / 詳目顯示

研究生: 楊朝偉
Yang, Chao-Wei
論文名稱: 氧分壓對於鍶鐵鉬氧之合成機制,缺陷結構及物理性質研究
Effect of Oxygen Partial Pressure on the Formation Mechanism, Defect Structure, and Physical Properties of Sr2FeMoO6
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 144
中文關鍵詞: Sr2FeMoO6龐磁阻反相晶界穿透式電子顯微鏡
外文關鍵詞: Sr2FeMoO6, Colossal magnetoresistance, Anti-phase Boundaries, Transmission Electron Microscopy
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙鈣鈦礦結構材料Sr2FeMoO6所具有的特殊電性與磁性行為使其成為高應用潛力的新穎材料,但是其對於製程參數變化敏感而不穩定的特性,造成其研究上的困難和應用上的阻礙。本研究論文聚焦於探討其製程參數的最佳化,並且在歸納製程參數影響後,著手分析不同氧分壓濃度環境下,所燒結試片之晶體顯微結構,電傳導性質,及磁阻性質。
    透過嚴謹的氧分壓濃度控制,證實在不同氧分壓濃度下燒結之試片,其晶體顯微結構中的反相晶界APB分佈呈現出不一樣的型態。在較高的氧分壓濃度,反相晶界APB因為B位置的Fe/Mo離子非均勻分佈,而具有核殼結構分佈的Maze-like APB和Swirl-like APB兩種區域。隨著氧分壓濃度的持續降低,此核殼結構分佈的反相晶界APB會因為B位置Fe/Mo離子逐漸均勻分佈而轉變為Swirl-like APB單一分佈。而這樣的過程,會進一步影響到磁阻材料Sr2FeMoO6所表現出來的電性與磁性行為。
    觀測得到的三種電性傳輸行為,可以透過氧分壓濃度高低劃分為三個區間。而這樣的區間劃分可以和晶體顯微結構的觀察結果互相映證,最後利用這樣的觀察結論架構出整個磁阻材料Sr2FeMoO6的合成機制。

    The special electronic and magnetic properties of Sr2FeMoO6 have attracted much interest on highly potential application and novel material. But senstive and unstable synthysis process has hinded the research and blocked its applications. This research project is focused on optimizing its process parameters and analyizing the micro-structure, electronic conduction, and magnetresistance properties under different oxygen partial pressure during sintering process.
    Through the detail controlling of oxygen partial pressure during sintering process, it have been proofed that the distribution of anti-phase boundaries (APB) in micro-structure would be variation via the controlling. In relative high oxygen partial pressure, the APB would distribute as core-shell structure, core as maze-like APB and shell as swirl-like APB, due to the in-homogeneious of B-site Fe/Mo ions. When lowering the oxygen partial pressure, such sore-shell structure would turn into Swirl-like APB united distribution. And such distribution of APB due to order-disorder B-site Fe/Mo ions would influence the electronic and magnetic properties of Sr2FeMoO6. The analysis of electronic conduction behavior could be divided into three major regions. And such three regions could be maped onto the observation results of micro-stucture through TEM analysis. Finally, the results could be used to establish the formation mechanism of Sr2FeMoO6.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 V 表格目錄: VIII 圖目錄: IX 1. 緒論 1 1.1. 前言 1 1.2. 研究目的與論文架構 6 2. 理論基礎 7 2.1. 磁阻現象(O'Handley, 2000) 7 2.1.1. 正常霍爾(Hall)效應 7 2.1.2. 常磁阻(Ordinary Magnetoresistance : OMR) 8 2.1.3. 鐵磁性材料中磁場與電流的效應 8 2.1.4. 異向性磁阻(Anisotropic Magnetoresistance : AMR) 8 2.1.5. 巨磁阻(Giant Magnetoresistance : GMR) 9 2.1.6. 自旋閥(Spin valve)(Dieny et al., 1991, Dieny, 1994) 10 2.1.7. 龐磁阻(Colossal Magnetoresistance : CMR) 12 2.1.8. 穿隧磁阻(Tunneling magnetoresistance : TMR) 15 2.2. 晶體結構性質與分析 16 2.2.1. 鈣鈦礦結構(Perovskite Structure) 16 2.2.2. SrFeO3-X的晶體結構 17 2.2.3. 雙鈣鈦礦Sr2(FeMo)O6晶體結構 20 2.2.4. 穿透式電子顯微鏡分析(Transmission Electron Microscopy: TEM) 26 2.3. 雙鈣鈦礦Sr2(FeMo)O6的電性質 30 2.3.1. 超交換交互作用(Super-exchange interaction) 30 2.3.2. 雙交換作用機制(Double-Exchange mechanism) 32 2.3.3. 電子跳躍模型(Electron Hopping Model) 33 2.3.4. 雙鈣鈦礦Sr2(FeMo)O6電子與能帶結構 37 2.3.5. 雙鈣鈦礦Sr2(FeMo)O6電傳導行為 39 2.4. 雙鈣鈦礦Sr2(FeMo)O6的磁性質 44 2.4.1. 雙鈣鈦礦Sr2(FeMo)O6磁性結構 44 2.4.2. 雙鈣鈦礦Sr2(FeMo)O6的低場磁阻(LFMR)性質 47 2.4.2.1. 晶粒間低場磁阻模型(Inter-Grain LFMR) 47 2.4.2.2. 晶粒內低場磁阻模型(Intra-Grain LFMR) 50 3. 實驗方法與分析 56 3.1. 實驗流程: 56 3.2. 樣品準備流程 57 3.3. 樣品鑑定: 60 3.3.1. XRD繞射鑑定 60 3.3.2. GSAS結構精算 62 3.4. 樣品分析 64 3.4.1. SEM掃瞄式電子顯微鏡 64 3.4.2. TEM穿透式電子顯微鏡 64 3.5. 樣品量測 67 3.5.1. 物理性質量測系統(Physical Properties Measurement System) 67 4. 結果與討論 71 4.1. 製程演進 71 4.1.1. 製程參數研究 71 4.1.2. 製程合成Sr2(FeMo)O6胚體之XRD精算鑑定 79 4.1.3. 製程合成Sr2(FeMo)O6胚體之SEM顯微結構觀察 80 4.1.4. 製程合成Sr2(FeMo)O6胚體之TEM顯微結構觀察 85 4.2. 燒結階段氧分壓濃度對Sr2(FeMo)O6性質之影響 93 4.2.1. 氧分壓濃度的控制,監測,與分析 93 4.2.2. 不同氧分壓濃度燒結條件試片之TEM觀察 98 4.2.2.1. 燒結條件0.3%-氧分壓濃度E-19.04 98 4.2.2.2. 燒結條件0.4%-氧分壓濃度E-19.58 99 4.2.2.3. 燒結條件0.8%-氧分壓濃度E-20.60 104 4.2.2.4. 燒結條件4%-氧分壓濃度E-21.96 107 4.2.3. 不同氧分壓濃度燒結條件試片之電傳導特性觀察 109 4.2.3.1. 區間I:金屬性傳導性質(0.5% E-19.51) 109 4.2.3.2. 區間II:半導性傳導性質(0.6% E-20.25;0.8% E-20.6;1% E-21.11) 112 4.2.3.3. 區間III:金屬-半導轉變傳導性質(2% E-21.66,4% E-21.96,5% E-22.38) 121 4.3. Sr2(FeMo)O6之合成機制 130 5. 結論 133 6. 後續研究計畫 135 7. 文獻列表 136 8. 附錄 142 8.1. 個人簡介 142 8.2. 著作目錄 143

    Amelinckx, S., Gevers, R. & Landuyt, J. v. (1978). Diffraction and imaging techniques in material science, 2d, rev. ed. Amsterdam ; New York: North-Holland Pub. Co. : sole distributors for the U.S.A. and Canada, Elsevier North-Holland.
    Anderson, P. W. (1950). Physical Review 79, 350-356.
    Anderson, P. W. (1958). Physical Review 109, 1492-1505.
    Anderson, P. W. & Hasegawa, H. (1955). Physical Review 100, 675-681.
    Asaka, T., Yu, X. Z., Tomioka, Y., Kaneko, Y., Nagai, T., Kimoto, K., Ishizuka, K., Tokura, Y. & Matsui, Y. (2007). Phys. Rev. B 75.
    Asano, H., Ogale, S. B., Garrison, J., Orozco, A., Li, Y. H., Li, E., Smolyaninova, V., Galley, C., Downes, M., Rajeswari, M., Ramesh, R. & Venkatesan, T. (1999). Appl. Phys. Lett. 74, 3696-3698.
    Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. & Chazelas, J. (1988). Phys. Rev. Lett. 61, 2472-2475.
    Balcells, L., Navarro, J., Bibes, M., Roig, A., Martinez, B. & Fontcuberta, J. (2001). Appl. Phys. Lett. 78, 781-783.
    Besse, M., Cros, V., Barthelemy, A., Jaffres, H., Vogel, J., Petroff, F., Mirone, A., Tagliaferri, A., Bencok, P., Decorse, P., Berthet, P., Szotek, Z., Temmerman, W. M., Dhesi, S. S., Brookes, N. B., Rogalev, A. & Fert, A. (2002). Europhys. Lett. 60, 608-614.
    Borges, R. P., Thomas, R. M., Cullinan, C., Coey, J. M. D., Suryanarayanan, R., Ben-Dor, L., Pinsard-Gaudart, L. & Revcolevschi, A. (1999). J. Phys.-Condes. Matter 11, L445-L450.
    Branford, W. R., Clowes, S. K., Bugoslavsky, Y. V., Miyoshi, Y., Cohen, L. F., Berenov, A. V., MacManus-Driscoll, J. L., Rager, J. & Roy, S. B. (2003). J. Appl. Phys. 94, 4714-4716.
    Brey, L., Calderon, M. J., Das Sarma, S. & Guinea, F. (2006). Phys. Rev. B 74.
    Chahara, K., Ohno, T., Kasai, M. & Kozono, Y. (1993). Appl. Phys. Lett. 63, 1990-1992.
    Chmaissem, O., Kruk, R., Dabrowski, B., Brown, D. E., Xiong, X., Kolesnik, S., Jorgensen, J. D. & Kimball, C. W. (2000). Phys. Rev. B 62, 14197-14206.
    Coey, J. M. D., Viret, M. & von Molnar, S. (2009). Advances in Physics 58, 571-697.
    Colis, S., Pourroy, G., Panissod, P., Meny, C. & Dinia, A. (2004). J. Magn. Magn. Mater. 272, 2018-2020.
    Cutler, M. & Mott, N. F. (1969). Physical Review 181, 1336-&.
    Dieny, B. (1994). J. Magn. Magn. Mater. 136, 335-359.
    Dieny, B., Speriosu, V. S., Parkin, S. S. P., Gurney, B. A., Wilhoit, D. R. & Mauri, D. (1991). Phys. Rev. B 43, 1297-1300.
    Fang, T. T. (2005). Phys. Rev. B 71.
    Fang, T. T. & Ko, T. F. (2003). J. Am. Ceram. Soc. 86, 1453-1455.
    Fang, T. T. & Lin, J. C. (2004). J. Am. Ceram. Soc. 87, 1343-1346.
    Fang, T. T. & Lin, J. C. (2005). J. Mater. Sci. 40, 683-686.
    Foygel, M., Morris, R. D. & Petukhov, A. G. (2003). Phys. Rev. B 67, 134205.
    Galasso, F. S., Douglas, F. C. & Kasper, R. J. (1966). The Journal of Chemical Physics 44, 1672-1674.
    Garcia-Landa, B., Ritter, C., Ibarra, M. R., Blasco, J., Algarabel, P. A., Mahendiran, R. & Garcia, J. (1999). Solid State Commun. 110, 435-438.
    Gaur, A. & Varma, G. D. (2007). Med. Mal. Infect. 37, 64-69.
    Goodenough, J. B. & Dass, R. I. (2000). Int. J. Inorg. Mater. 2, 3-9.
    Greneche, J. M., Venkatesan, M., Suryanarayanan, R. & Coey, J. M. D. (2001). Phys. Rev. B 63.
    Hodges, J. P., Short, S., Jorgensen, J. D., Xiong, X., Dabrowski, B., Mini, S. M. & Kimball, C. W. (2000). J. Solid State Chem. 151, 190-209.
    Huang, Y.-H., Dass, R. I., Xing, Z.-L. & Goodenough, J. B. (2006). Science 312, 254-257.
    Huang, Y.-H., Liang, G., Croft, M., Lehtimaki, M., Karppinen, M. & Goodenought, J. B. (2009). Chem. Mat. 21, 2319-2326.
    Huang, Y.-L., Chiu, S.-P., Zhu, Z.-X., Li, Z.-Q. & Lin, J.-J. (2010). J. Appl. Phys. 107, 063715-063716.
    Huang, Y. H., Karppinen, M., Yamauchi, H. & Goodenough, J. B. (2006). Phys. Rev. B 73.
    Huang, Y. H., Linden, J., Yamauchi, H. & Karppinen, M. (2004). Chem. Mat. 16, 4337-4342.
    Huang, Y. H., Yamauchi, H. & Karppinen, M. (2006). Phys. Rev. B 74, 6.
    Itoh, M., Ohta, I. & Inaguma, Y. (1996). Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 41, 55-58.
    Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R. & Chen, L. H. (1994). Science 264, 413-415.
    Jin, S., Tiefel, T. H., McCormack, M., Obryan, H. M., Chen, L. H., Ramesh, R. & Schurig, D. (1995). Appl. Phys. Lett. 67, 557-559.
    Jonker, G. H. & Van Santen, J. H. (1950). Physica 16, 337-349.
    Kaji, S., Oomi, G., Tomioka, Y. & Tokura, Y. (2007). Phys. Rev. B 75.
    Kapusta, C., Riedi, P. C., Zajac, D., Sikora, M., De Teresa, J. M., Morellon, L. & Ibarra, M. R. (2002). J. Magn. Magn. Mater. 242, 701-703.
    Kapusta, C., Zajac, D., Riedi, P. C., Sikora, M., Oates, C. J., Blasco, J. & Ibarra, M. R. (2004). J. Magn. Magn. Mater. 272, E1619-E1621.
    Kim, T. H., Uehara, M., Cheong, S. W. & Lee, S. (1999). Appl. Phys. Lett. 74, 1737-1739.
    Kobayashi, K. L., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature 395, 677-680.
    Kramers, H. A. (1934). Physica 1, 825-828.
    Kusters, R. M., Singleton, J., Keen, D. A., McGreevy, R. & Hayes, W. (1989). Physica B 155, 362-365.
    Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. (2009). Phys. Today 62, 24-29.
    Linden, J., Karppinen, M., Shimada, T., Yasukawa, Y. & Yamauchi, H. (2003). Phys. Rev. B 68.
    Linden, J., Shimada, T., Motohashi, T., Yamauchi, H. & Karppinen, M. (2004). Solid State Commun. 129, 129-133.
    Linden, J., Yamamoto, T., Karppinen, M., Yamauchi, H. & Pietari, T. (2000). Appl. Phys. Lett. 76, 2925-2927.
    Linden, J., Yamamoto, T., Nakamura, J., Karppinen, M. & Yamauchi, H. (2001). Appl. Phys. Lett. 78, 2736-2738.
    Linden, J., Yamamoto, T., Nakamura, J., Yamauchi, H. & Karppinen, M. (2002). Phys. Rev. B 66.
    Linden, J., Yamamoto, T., Yamauchi, H. & Karppinen, M. (2002). Physica B 312, 787-788.
    Linden, J., Yamauchi, H. & Karppinen, M. (2004). J. Magn. Magn. Mater. 272, 843-844.
    Liu, G. Y., Rao, G. H., Feng, X. M., Yang, H. F., Ouyang, Z. W., Liu, W. F. & Liang, J. K. (2003a). J. Alloy. Compd. 353, 42-47.
    Liu, G. Y., Rao, G. H., Feng, X. M., Yang, H. F., Ouyang, Z. W., Liu, W. F. & Liang, J. K. (2003b). J. Phys.-Condes. Matter 15, 2053-2060.
    Liu, G. Y., Rao, G. H., Feng, X. M., Yang, H. F., Ouyang, Z. W., Liu, W. F. & Liang, J. K. (2003c). Physica B 334, 229-233.
    Liu, Q., Dong, X., Xiao, G., Zhao, F. & Chen, F. (2010). Adv. Mater. 22, 5478-5482.
    Longo, J. & Ward, R. (1961). Journal of the American Chemical Society 83, 2816-2818.
    Macchesney.Jb, Sherwood, R. C. & Potter, J. F. (1965). Journal of Chemical Physics 43, 1907-&.
    MacManus-Driscoll, J. L., Sharma, A., Bugoslavsky, Y., Branford, W., Cohen, L. F. & Wei, M. (2006). Adv. Mater. 18, 900-+.
    Majewski, P., Rager, J., Schurr, C. M. & Aldinger, F. (2001). Int. J. Inorg. Mater. 3, 733-736.
    Meneghini, C., Ray, S., Liscio, F., Bardelli, F., Mobilio, S. & Sarma, D. D. (2009). Phys. Rev. Lett. 103.
    Mishra, R., Restrepo, O. D., Woodward, P. M. & Windl, W. (2010). Chem. Mat. 22, 6092-6102.
    Mitsui, K., Suzuki, T. & Mishima, Y. (1995). Intermetallics 3, 161-166.
    Moritomo, Y., Xu, S., Akimoto, T., Machida, A., Hamada, N., Ohoyama, K., Nishibori, E., Takata, M. & Sakata, M. (2000). Phys. Rev. B 62, 14224-14228.
    Mott, N. F. (1968). Rev. Mod. Phys. 40, 677-683.
    Munoz-Garcia, A. B., Pavone, M. & Carter, E. A. (2011). Chem. Mat. 23, 4525-4536.
    Nakagawa, T. (1968). J. Phys. Soc. Jpn. 24, 806-&.
    Nakamura, T., Kunihara, K. & Hirose, Y. (1981). Mater. Res. Bull. 16, 321-326.
    Navarro, J., Balcells, L., Sandiumenge, F., Bibes, M., Roig, A., Martinez, B. & Fontcuberta, J. (2001). J. Phys.-Condes. Matter 13, 8481-8488.
    Niebieskikwiat, D., Caneiro, A., Sanchez, R. D. & Fontcuberta, J. (2001). Phys. Rev. B 64.
    Niebieskikwiat, D., Sanchez, R. D., Caneiro, A., Morales, L., Vasquez-Mansilla, M., Rivadulla, F. & Hueso, L. E. (2000). Phys. Rev. B 62, 3340-3345.
    O'Handley, R. C. (2000). Modern magnetic materials : principles and applications. New York: John Wiley & Sons.
    Patterson, F. K., Moeller, C. W. & Ward, R. (1963). Inorganic Chemistry 2, 196-198.
    Poddar, A., Bhowmik, R. N., Muthuselvam, I. P. & Das, N. (2009). J. Appl. Phys. 106.
    Poddar, A. & Mazumdar, C. (2011). Mater. Res. Bull. 46, 682-686.
    Rager, J., Zipperle, A., Sharma, A. & MacManus-Driscoll, J. L. (2004). J. Am. Ceram. Soc. 87, 1330-1335.
    Ray, S., Kumar, A., Majumdar, S., Sampathkumaran, E. V. & Sarma, D. D. (2001). J. Phys.-Condes. Matter 13, 607-616.
    Rietveld, H. M. (1969). J Appl Crystallogr 2, 65-&.
    Ritter, C., Ibarra, M. R., Morellon, L., Blasco, J., Garcia, J. & De Teresa, J. M. (2000). J. Phys.-Condes. Matter 12, 8295-8308.
    Rozenberg, E., Auslender, M., Felner, I. & Gorodetsky, G. (2000). J. Appl. Phys. 88, 2578-2582.
    Sanchez-Soria, D., Alonso, J. A., Garcia-Hernandez, M., Martinez-Lope, M. J., Martinez, J. L. & Mellergard, A. (2002). Appl. Phys. A-Mater. Sci. Process. 74, S1752-S1754.
    Sanchez, D., Alonso, J. A., Hernandez, M. G., Martinez-Lope, M. J., Martinez, J. L. & Mellergard, A. (2002). Phys. Rev. B 65.
    Sarma, D. D., Mahadevan, P., Saha-Dasgupta, T., Ray, S. & Kumar, A. (2000). Phys. Rev. Lett. 85, 2549-2552.
    Sarma, D. D., Ray, S., Tanaka, K., Kobayashi, M., Fujimori, A., Sanyal, P., Krishnamurthy, H. R. & Dasgupta, C. (2007). Phys. Rev. Lett. 98.
    Sarma, D. D., Sampathkumaran, E. V., Ray, S., Nagarajan, R., Majumdar, S., Kumar, A., Nalini, G. & Row, T. N. G. (2000). Solid State Commun. 114, 465-468.
    Serrate, D., De Teresa, J. M. & Ibarra, M. R. (2007). J. Phys.-Condes. Matter 19.
    Singh, V. N. & Majumdar, P. (2011). Epl 94.
    Siwach, P. K., Singh, H. K. & Srivastava, O. N. (2008). J. Phys.-Condes. Matter 20.
    Song, W. H., Dai, J. M., Ye, S. L., Wang, K. Y., Du, J. J. & Sun, Y. P. (2001). J. Appl. Phys. 89, 7678-7680.
    Sugahara, T., Araki, T., Ohtaki, M. & Suganuma, K. (2012). Journal of the Ceramic Society of Japan 120, 211-216.
    Sugahara, T., Ngo Van, N. & Ohtakic, M. (2012). Mater. Chem. Phys. 133, 630-634.
    Sugahara, T., Ohtaki, M. & Souma, T. (2008). Journal of the Ceramic Society of Japan 116, 1278-1282.
    Takeda, Y., Kanno, K., Takada, T., Yamamoto, O., Takano, M., Nakayama, N. & Bando, Y. (1986). J. Solid State Chem. 63, 237-249.
    Tofield, B. C., Greaves, C. & Fender, B. E. F. (1975). Mater. Res. Bull. 10, 737-746.
    Tokura, Y. & Nagaosa, N. (2000). Science 288, 462-468.
    Tomioka, Y., Okuda, T., Okimoto, Y., Kumai, R., Kobayashi, K. I. & Tokura, Y. (2000). Phys. Rev. B 61, 422-427.
    Topfer, J., Kircheisen, R. & Barth, S. (2009). J. Appl. Phys. 105.
    Topwal, D., Sarma, D. D., Kato, H., Tokura, Y. & Avignon, M. (2006). Phys. Rev. B 73.
    Tovar, M., Causa, M. T., Butera, A., Navarro, J., Martinez, B., Fontcuberta, J. & Passeggi, M. C. G. (2002). Phys. Rev. B 66.
    Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G. & Tokura, Y. (1995). Phys. Rev. B 51, 14103-14109.
    Van Santen, J. H. & Jonker, G. H. (1950). Physica 16, 599-600.
    Volger, J. (1954). Physica 20, 49-66.
    Vonhelmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. (1993). Phys. Rev. Lett. 71, 2331-2333.
    Wang, Z. M., Tian, Y. & Li, Y. D. (2011). Journal of Power Sources 196, 6104-6109.
    Williams, D. B., Carter, C. B. & SpringerLink (Online service) (2009). Transmission electron microscopy a textbook for materials science, Springer eBooks, pp. lxii, 760 p. Boston, MA: Springer US.
    Woodward, P. M. (1997a). Acta Crystallogr. Sect. B-Struct. Sci. 53, 32-43.
    Woodward, P. M. (1997b). Acta Crystallogr. Sect. B-Struct. Sci. 53, 44-66.
    Wu, H.-C., Abid, M., Chun, B. S., Ramos, R., Mryasov, O. N. & Shvets, I. V. (2010). Nano Letters 10, 1132-1136.
    Xiong, G. C., Li, Q., Ju, H. L., Bhagat, S. M., Lofland, S. E., Greene, R. L. & Venkatesan, T. (1995). Appl. Phys. Lett. 67, 3031-3033.
    Yanagihara, H., Salamon, M. B., Lyanda-Geller, Y., Xu, S. & Moritomo, Y. (2001). Phys. Rev. B 64.
    Yin, H. Q., Zhou, J. S., Zhou, J. P., Dass, R., McDevitt, J. T. & Goodenough, J. B. (1999). Appl. Phys. Lett. 75, 2812-2814.
    Yu, X. Z., Asaka, T., Tomioka, Y., Kaneko, Y., Uchida, M., He, J. P., Nagai, T., Kimoto, K., Matsui, Y. & Tokura, Y. (2007). J. Magn. Magn. Mater. 310, 1572-1574.
    Yu, X. Z., Asaka, T., Tomioka, Y., Tsuruta, C., Nagai, T., Kimoto, K., Kaneko, Y., Tokura, Y. & Matsui, Y. (2005). J. Electron Microsc. 54, 61-65.
    Yuan, C. L., Wang, S. G., Song, W. H., Yu, T., Dai, J. M., Ye, S. L. & Sun, Y. P. (1999). Appl. Phys. Lett. 75, 3853-3855.
    Yuan, C. L., Zhu, Y., Ong, P. P., Shen, Z. X. & Ong, C. K. (2004). Solid State Commun. 129, 551-554.
    Zener, C. (1951). Physical Review 82, 403-405.
    Zhang, L. L., Zhou, Q. J., He, Q. A. & He, T. M. (2010). Journal of Power Sources 195, 6356-6366.
    Zhu, X. F., Li, Q. F. & Chen, L. F. (2008). J. Phys.-Condes. Matter 20.

    下載圖示 校內:2013-08-01公開
    校外:2013-08-01公開
    QR CODE