| 研究生: |
余糧全 Yu, Liang-Chiuan |
|---|---|
| 論文名稱: |
產銷整合e-kanban系統─以半導體拉晶生產為例 Sales-production integration e-Kanban system ─ Case of semiconductor crystal pulling manufacturing |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 半導體拉晶生產 、多廠規劃 、精實拉式生產系統 、平行機台排程 、決策支援系統 |
| 外文關鍵詞: | Lean Pull Manufacturing System, Parallel Machine Scheduling, Multi-site Planning, Semiconductor Crystal Pulling Manufacturing, Decision Support System |
| 相關次數: | 點閱:151 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討案例公司跨國多廠晶圓製造的拉晶製程,其為半導體產業的源頭,亦為全球供應鏈的重要環節。在面對龐大市場需求及長晶設備昂貴的情況下,提高機台利用率、提高產能、降低浪費已成了最重要的課題。
案例公司為跨國多廠的結構,而各廠有其不同的生產條件,因此面對不同區域性的顧客訂單,通常以各廠專責鄰近地區顧客訂單的方式生產,這樣一來往往由於各區域性訂單需求波動變化而造成各廠產能需求比的不均,訂單無法分配至合適且有產能的工廠生產,進而造成服務水準與產出下降的情況。又因現今環境變化快速,若工廠照著週計劃或日計劃進行生產,如此對於突發狀況沒有辦法立即反應,例如工作現場的機台當機或臨時有緊急插單須處理等狀況,可能造成訂單延誤交期的問題,而降低顧客滿意度。因此,如何有效的分配訂單需求至工廠生產及提升拉晶製程的工作效能,讓管理者能夠監控現場生產情況,決策結果也能夠快速且正確地傳達到工作現場,此為本研究主要探討之議題。
本研究針對案例公司的多廠生產環境,設計一多廠e-Kanban系統架構,將訂單放置於中央等候,有產能的機台將考量運送成本及生產限制透過此系統有效的抓取訂單至工廠作生產。
本系統使用模擬工具建構的虛擬工廠,實際模擬生產現場的情況,再透過Excel VBA表單及程式撰寫功能輔助實現e-Kanban與生產現場的協作處理。就彷彿真實工廠配合決策資訊平台共同運作生產現場。
透過模擬模式及e-Kanban系統平台的建置,未來的服務水準高於現況4.86%,產出高於10.77%、機台利用率高於13.23%、利潤也高於7.33%。而在當敏感度分析的部分,工作負荷因子的變動績效比較亦可被證明在環境變動的情況下,此改善方法優於現況作法,且系統較具穩健性。
This study investigated the case and more multinational companies pulling wafer fabrication plant process, which is the source of the semiconductor industry, is also an important link in the global supply chain. In the face of the huge market demand and crystal growth equipment is expensive, improve machine utilization, increase productivity, reduce waste has become the most important issue.
Case for multinational multi-plant company structure, but each plant has its different production conditions and therefore face different regional customer orders, usually in neighboring areas of the plant dedicated customer order to produce, so that often due to the regional fluctuations in demand caused by changes in the order of the plant than the uneven capacity requirements, order and it can not be assigned to the appropriate factory production capacity, thus resulting in service levels and throughput decline. Because of the rapid changes in today's environment, if the factory according to plan weekly plan or date of production, so there is no way for an immediate response unexpected situations, such as job-site machine down or temporary emergency to deal with a single plug and other conditions, may cause orders delayed delivery problems, and reduce customer satisfaction. Therefore, how to effectively allocate orders to the factory production needs and enhance the work of the crystal pulling process performance, allowing administrators to monitor the on-site production, making the results can also be quickly and accurately communicated to the job site, this study will investigate the question.
This study case's multi-plant environment, design multi-plant e-Kanban system architecture, the orders placed in the queue of the center waiting, there is capacity machine will consider shipping costs and production constraints through the system to efficiently retrieve orders to the factory for production.
The system is constructed using the virtual factory simulation tools, the actual situation simulate the production site, and through Excel VBA forms and programming functions help to achieve e-Kanban and collaborate on the production site. As if the real decision-making information platform factory jointly operated with the production site.
Through simulation model and e-Kanban system platform, the service level of future system by 4.86% higher than the current situation, the throughput is higher than 10.77%, machine utilization is higher than 13.23%, profits are higher than 7.33%. When the sensitivity analysis in part, changes in workload performance comparison factor also been demonstrated in the case of changes in the environment, this improved method is superior to existing state practice and the more robust system.
林則孟, 2006. 生產計畫與管理, 華泰文化.
美國半導體產業協會(SIA), 民民100, 2011年第一季全球晶圓廠產能利用率, http://www.eettaiwan.com/ART_8800646373_480202_NT_9866ebdd.HTM?jumpto=view_welcomead_1343766089032
黃建中,民93,多廠區規劃與排程—以TFT-LCD廠為例,國立清華大學工業工程與工程管理學系,碩士論文。
謝宗叡,民101,精實系統設計與分析-以半導體拉晶生產為例,國立成功大學製造資訊與系統研究所,碩士論文。
王惠儀,民101,e-Kanban系統執行─以半導體拉晶生產為例,國立成功大學製造資訊與系統研究所,碩士論文。
簡禎富, 施義成, 林振銘, and 陳瑞坤, 民94. 半導體製造技術與管理, 國立清華大學出版社.
Banks, J., 2010. Discrete-event system simulation, 5th ed., Prentice Hall, Upper Saddle River.
Drickhamer, D., 2005. The kanban e-volution. Material Handling & Logistics, 60 (3), 24-26.
Frantzen, M., Ng, A.H.C., and Moore, P., 2011. A simulation-based scheduling system for real-time optimization and decision making support. Robotics and Computer-Integrated Manufacturing, 27 (4), 696-705.
Goldratt, E.M. and Cox, J., 2004. The goal : a process of ongoing improvement, 3rd rev. ed., North River Press, Great Barrington, MA.
Guinet, A., 2001. Multi-site planning: A transshipment problem. International Journal of Production Economics, 74 (1), 21-32.
Harland, C., 1997. Supply chain operational performance roles. Integrated Manufacturing Systems, 8 (2), 70-78.
Hopp, W. and Spearman, M.L., 2008. Factory Physics, 3rd Revised edition ed., McGraw-Hill Education - Europe, United States.
Kanyalkar, A. and Adil, G., 2005. An integrated aggregate and detailed planning in a multi-site production environment using linear programming. International Journal of Production Research, 43 (20), 4431-4454.
Kelton, W.D., Sadowski, R.P., and Swets, N.B., 2010. Simulation with Arena, 5th ed., McGraw-Hill Higher Education, Boston.
Kouri, I., Salmimaa, T., and Vilpola, I., 2008. The principles and Planning Process of an Electronic Kanban System. Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics. Springer, 99-104.
Lee, Y.H., Kim, S.H., and Moon, C., 2002. Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13 (1), 35-46.
Monden, Y., 2012. Toyota production system : an integrated approach to just-in-time, 4th ed., CRC Press, Boca Raton.
Moon, C., Kim, J., and Hur, S., 2002. Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering, 43 (1), 331-349.
Pinedo, M., 2008. Scheduling : theory, algorithms, and systems, 3rd ed., Springer, New York ; London.
Ribas, I., Leisten, R., and Framiñan, J.M., 2010. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37 (8), 1439-1454.
Riezebos, J. and Klingenberg, W., 2009. Advancing lean manufacturing, the role of IT. Computers in Industry, 60 (4), 235-236.
SEMI, 1999. Standard for definition and measurement of equipment productivity. SEMI E79-0299: Semiconductor equipment and material international, Mt. View, CA.
Timpe, C.H. and Kallrath, J., 2000. Optimal planning in large multi-site production networks. European Journal of Operational Research, 126 (2), 422-435.
Tomino, T. and Azuma, T., 2011. Analysis of Toyota-Style Supply Chain Management Case of GAC Toyota Motor Co.: MMRC discussion paper series.
Van Zant, P., 2004. Microchip fabrication : a practical guide to semiconductor processing, 5th ed., McGraw-Hill, New York.
Vercellis, C., 1999. Multi-plant production planning in capacitated self-configuring two-stage serial systems. European Journal of Operational Research, 119 (2), 451-460.
Wan, H.-d. and Chen, F., 2008. A Web-based Kanban system for job dispatching, tracking, and performance monitoring. The International Journal of Advanced Manufacturing Technology, 38 (9-10), 995-1005.
Womack, J.P. and Jones, D.T., 2003. Lean thinking : banish waste and create wealth in your corporation, 1st Free Press ed., Free Press, New York.
Yang, T. and Shen, Y.-A., 2011. Heuristic algorithms for a practical-size dynamic parallel-machine scheduling problem: integrated-circuit wire bonding. Production Planning & Control, 23 (1), 67-78.