| 研究生: |
郭祐豪 Kuo, Yu-Hao |
|---|---|
| 論文名稱: |
複合實驗技術於評估RC構架倒塌行為之發展與應用 Development and Application of Hybrid Simulation Techniques for the Collapse Behavior of RC Frames |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 共同指導教授: |
王孔君
Wang, Kung-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 複合實驗 、OpenSees 、OpenFresco 、鋼筋混凝土柱 、MTS CSIC 、超高性能纖維混凝土 |
| 外文關鍵詞: | Hybrid Testing, Hybrid Simulation, RC Columns, OpenSees, OpenFresco, MTS CSIC, UHPC |
| 相關次數: | 點閱:190 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過三座以ACI 318-19設計並製作全尺鋼筋混凝土柱,於國家地震中心台南實驗室反力牆系統進行RC柱構件複合實驗系統之測試,以建立相關流程、釐清實驗訊號之收發規則及應用方式。
複合實驗為慢速實驗且使用三環控制架構,使用OpenSees (Open System for Earthquake Engineering Simulation)作為實驗的數值計算端、OpenFresco (Open source Framework for Experimental Setup and Control)作為中間層、MTS CSIC (Computer Simulation Interface and Configurator)作為實驗室控制系統;在過程中,由NewmarkHSFixedNumIter數值積分法計算一時間步長因地震歷時導致的結構動力行為反應,接著使用致動器將計算出的位移施加到試體上,用感測器獲取產生位移所需的力,並將其反饋給數值計算端以計算對應於下一時間步長的位移。
根據試驗結果與分析表明,本研究實驗治具之配置以及相關程式設置可提供穩定之邊界條件,且在合理位移命令誤差範圍內於國家地震中心台南實驗室反力牆系統進行複合實驗。
Three full-scale reinforced concrete columns that were designed in accordance with ACI 318-19 underwent a hybrid simulation system experiment in the National Center for Research on Earthquake Engineering (NCREE) Tainan Laboratory by the reaction wall system. The experiment goal is to establish pertinent protocols, clarify the guidelines, and show how to send and receive experimental signals.
This hybrid simulation is a slow experiment that makes use of three-loop control architecture. The numerical calculation tier of the experiment is handled by OpenSees (Open System for Earthquake Engineering Simulation), the middle tier is handled by OpenFresco (Open source Framework for Experimental Setup and Control), and the lab control system is handled by MTS CSIC (Computer Simulation Interface and Configurator).The dynamic behavior response of the structure due to the duration of the earthquake is calculated at each time step using the NewmarkHSFixedNumIter numerical integration method. The calculated displacement is then applied to the specimen using the actuator, the force necessary to generate the displacement is obtained by the sensor, and it is fed back to the numerical calculation tier to calculate the displacement of the following time step.
The configuration of the experimental fixture and the associated program settings in this study can provide stable boundary conditions, and the hybrid simulation is carried out in the reaction wall system of the NCREE Tainan Laboratory within a reasonable displacement command error range. This is demonstrated by the test and analysis results.
[1] Arêde, A. J. C. D. (1997). Seismic assessment of reinforced concrete frame structures with a new flexibility based element. Universidade do Porto (Portugal).
[2] Bermudez, M., & Hung, C.-C. (2019). Shear behavior of ultra-high performance hybrid fiber reinforced concrete beams. International Interactive Symposium on Ultra-High Performance Concrete,
[3] Committee, A. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary Building Code Requirements for Structural Concrete (ACI 318R-19).
[4] Deng, H.-Z. (2006). A simplified method for nonlinear cyclic analysis of reinforced concrete structures: Direct and energy based formulations Carleton University].
[5] Elwood, K. J. (2004). Modelling failures in existing reinforced concrete columns. Canadian Journal of Civil Engineering, 31(5), 846-859. https://doi.org/10.1139/l04-040
[6] Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4), 476-484. <Go to ISI>://WOS:000267256900009
[7] Elwood, K. J., & Moehle, J. P. (2005). Axial capacity model for shear-damaged columns. ACI Structural Journal, 102(4), 578.
[8] Hakuno, M., Shidawara, M., & Hara, T. (1969). DYNAMIC DESTRUCTIVE TEST OF A CANTILEVER BEAM, CONTROLLED BY AN ANALOG-COMPUTER. Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
[9] Hosinieh, M. M., Aoude, H., Cook, W. D., & Mitchell, D. (2015). Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading. Engineering Structures, 99, 388-401.
[10] Hsiao, F.-P., Lu, L.-Y., & Yeh, S.-W. (2022). Hybrid testing application of OpenFresco in multi-physics substructure of seven-story RC frame. The Sixteenth National Conference on Structural Engineering and The Sixth National Conference on Earthquake Engineering,
[11] Hsiao, F.-P., Weng, P.-W., Shen, W.-C., Li, Y.-A., Tsai, R.-J., & Hwang, S.-J. (2019). Experimental planning and structural collapse behavior of 7-story reinforced concrete building model under near-fault earthquakes. International conference in commemoration of 20th anniversary of the 1999 Chi-Chi Earthquake,
[12] Hsiao, F., Weng, P., Shen, W., Li, Y., Tsai, R., & Hwang, S. (2021). Study on Structural Collapse Behavior of Reinforced Concrete Building Under Near-Fault Earthquakes. In EASEC16 (pp. 771-779). Springer.
[13] Hung, C.-C., & Chueh, C.-Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
[14] Hung, C.-C., El-Tawil, S., & Chao, S.-H. (2021). A review of developments and challenges for UHPC in structural engineering: behavior, analysis, and design. Journal of Structural Engineering, 147(9), 03121001.
[15] Hung, C.-C., & Hu, F.-Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
[16] Hung, C.-C., Hu, F.-Y., & Yen, C.-H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[17] Hung, C.-C., Kuo, C.-W., & Shao, Y. (2021). Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels. Journal of Building Engineering, 44, 103305.
[18] Hung, C.-C., Lee, H.-S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
[19] Hung, C.-C., Li, H., & Chen, H.-C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[20] Hung, C.-C., & Yen, C.-H. (2021). Compressive behavior and strength model of reinforced UHPC short columns. Journal of Building Engineering, 35, 102103.
[21] Hung, C.-C., Yen, W.-M., & Yu, K.-H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[22] Kakavand, M. A. (2012). Limit state material manual. available on opensees. berkeley. edu.
[23] Kashani, M. M., Lowes, L. N., Crewe, A. J., & Alexander, N. A. (2016). Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement. Engineering Structures, 116, 163-177.
[24] Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the structural division, 97(7), 1969-1990.
[25] Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
[26] Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, 264, 137-158.
[27] McCrum, D. P., & Williams, M. S. (2016). An overview of seismic hybrid testing of engineering structures. Engineering Structures, 118, 240-261. https://doi.org/10.1016/j.engstruct.2016.03.039
[28] McKenna F, F. G., Scott MH, Jeremic B. (2001). Open system for earthquake engineering simulation. http:// opensees.berkeley.edu
[29] Melo, J., Varum, H., & Rossetto, T. (2015). Experimental cyclic behaviour of RC columns with plain bars and proposal for Eurocode 8 formula improvement. Engineering Structures, 88, 22-36.
[30] Melo, J., Varum, H., & Rossetto, T. (2020). Numerical Modeling of RC Columns and a Modified Steel Model Proposal for Elements With Plain Bars. Frontiers in Built Environment, 210.
[31] Mosqueda, G., Stojadinović, B., & Mahin, S. A. (2005). Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures. Earthquake Engineering Research Center, University of California Berkeley.
[32] Saiidi, M., & Sozen, M. A. (1979). Simple and complex models for nonlinear seismic response of reinforced concrete structures.
[33] Saouma, V., & Sivaselvan, M. (2014). Hybrid simulation: Theory, implementation and applications. CRC Press.
[34] Sarebanha, A., Schellenberg, A. H., Schoettler, M. J., Mosqueda, G., & Mahin, S. A. (2019). Real-time hybrid simulation of seismically isolated structures with full-scale bearings and large computational models. Computer Modeling in Engineering & Sciences, 120(3), 693-717.
[35] Schellenberg, A., Huang, Y., & Mahin, S. A. (2009). Structural FE-software coupling through the experimental software framework, OpenFresco.
[36] Schellenberg, A., Kim, H. K., Takahashi, Y., Fenves, G. L., & Mahin, S. A. (2009). OpenFresco command language manual. University of California: Berkeley, CA, USA.
[37] Schellenberg, A. H., Mahin, S. A., & Fenves, G. L. (2008). Advanced implementation of hybrid simulation. University of California, Berkeley.
[38] Spencer, B., & Carrion, J. E. (2007). Real-time hybrid testing of semi-actively controlled structure with MR damper. 2nd International Conference on Advances in Experimental Structural Engineering, AESE 2007,
[39] Terzic, V. (2011). Force-based element vs. Displacement-based element. University of Berkeley, OpenSees, NEES, & NEEScomm.
[40] Yang, C.-Y., Cai, X.-S., Yuan, Y., & Ma, Y.-C. (2019). Hybrid simulation of soil station system response to two-dimensional earthquake excitation. Sustainability, 11(9), 2582.
[41] 中國土木水利工程學會混凝土工程委員會. (2021). 混凝土工程設計規範(土木401-110).
[42] 內政部營建署. (2021). 建築技術規則建築設計施工編.
[43] 洪崇展, 郭家維, & 黃丞毅. (2020). 超高性能纖維混凝土於非韌性柱包覆補強工法之有效性. 中國土木水利工程學刊, 32(8), 693-699.
[44] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51. https://doi.org/10.6653/MoCICHE/2017.04401.05
[45] 郭家維. (2020). 超高性能纖維混凝土於RC柱之耐震補強效用.國立成功 大學土木工程學系學位論文. https://hdl.handle.net/11296/9efv65
[46] 經濟部標準檢驗局. (1996). 中華民國國家標準 CNS2111 G2013 金屬材料拉伸試驗法.
[47] 蕭齊揚. (2022). 預鑄UHPC管填充混凝土柱之抗耐震性能研究.國立成功 大學土木工程學系學位論文.