簡易檢索 / 詳目顯示

研究生: 郭祐豪
Kuo, Yu-Hao
論文名稱: 複合實驗技術於評估RC構架倒塌行為之發展與應用
Development and Application of Hybrid Simulation Techniques for the Collapse Behavior of RC Frames
指導教授: 洪崇展
Hung, Chung-Chan
共同指導教授: 王孔君
Wang, Kung-Juin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 193
中文關鍵詞: 複合實驗OpenSeesOpenFresco鋼筋混凝土柱MTS CSIC超高性能纖維混凝土
外文關鍵詞: Hybrid Testing, Hybrid Simulation, RC Columns, OpenSees, OpenFresco, MTS CSIC, UHPC
相關次數: 點閱:190下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過三座以ACI 318-19設計並製作全尺鋼筋混凝土柱,於國家地震中心台南實驗室反力牆系統進行RC柱構件複合實驗系統之測試,以建立相關流程、釐清實驗訊號之收發規則及應用方式。
    複合實驗為慢速實驗且使用三環控制架構,使用OpenSees (Open System for Earthquake Engineering Simulation)作為實驗的數值計算端、OpenFresco (Open source Framework for Experimental Setup and Control)作為中間層、MTS CSIC (Computer Simulation Interface and Configurator)作為實驗室控制系統;在過程中,由NewmarkHSFixedNumIter數值積分法計算一時間步長因地震歷時導致的結構動力行為反應,接著使用致動器將計算出的位移施加到試體上,用感測器獲取產生位移所需的力,並將其反饋給數值計算端以計算對應於下一時間步長的位移。
    根據試驗結果與分析表明,本研究實驗治具之配置以及相關程式設置可提供穩定之邊界條件,且在合理位移命令誤差範圍內於國家地震中心台南實驗室反力牆系統進行複合實驗。

    Three full-scale reinforced concrete columns that were designed in accordance with ACI 318-19 underwent a hybrid simulation system experiment in the National Center for Research on Earthquake Engineering (NCREE) Tainan Laboratory by the reaction wall system. The experiment goal is to establish pertinent protocols, clarify the guidelines, and show how to send and receive experimental signals.

    This hybrid simulation is a slow experiment that makes use of three-loop control architecture. The numerical calculation tier of the experiment is handled by OpenSees (Open System for Earthquake Engineering Simulation), the middle tier is handled by OpenFresco (Open source Framework for Experimental Setup and Control), and the lab control system is handled by MTS CSIC (Computer Simulation Interface and Configurator).The dynamic behavior response of the structure due to the duration of the earthquake is calculated at each time step using the NewmarkHSFixedNumIter numerical integration method. The calculated displacement is then applied to the specimen using the actuator, the force necessary to generate the displacement is obtained by the sensor, and it is fed back to the numerical calculation tier to calculate the displacement of the following time step.

    The configuration of the experimental fixture and the associated program settings in this study can provide stable boundary conditions, and the hybrid simulation is carried out in the reaction wall system of the NCREE Tainan Laboratory within a reasonable displacement command error range. This is demonstrated by the test and analysis results.

    摘要I 誌謝VI 目錄VII 表目錄XII 圖目錄XV 第一章緒論1 1.1 研究動機1 1.2 研究目的1 1.3 研究方法2 第二章文獻回顧3 2.1 複合實驗3 2.2 擬動態測試4 2.3 OPENFRESCO複合實驗系統5 2.4 邊界效應對鋼筋混凝土柱響應之影響6 2.5 複合實驗之積分方法8 2.6 複合實驗之誤差9 2.7 MTS之複合實驗系統11 2.8 超高性能纖維混凝土12 第三章複合實驗之架構及設置15 3.1 數值計算端OPENSEES15 3.1.1 OpenSees分析架構15 3.1.2 Opensees在OpenFresco架構之應用17 3.2 中間層OPENFRESCO18 3.2.1 OpenFresco程式架構18 3.2.2 OpenFresco內部模塊20 3.2.3 OpenFresco數據流21 3.3 實驗室控制程序MTS CSIC23 3.4 數值積分法NEWMARKHSFIXEDNUMITER24 3.5 MTS CSIC參數設置25 3.6 控制點自由度設置26 3.7 OPENFRESCO實驗設置28 3.8 預測-校正演算法30 3.9 加載時間31 3.10 實驗場設置31 第四章四層樓RC抗彎構架數值模型36 4.1 柱體模型建立36 4.2 材料模型37 4.2.1 一般混凝土材料模型37 4.2.2 超高性能纖維混凝土材料模型38 4.2.3 鋼筋混凝土柱圍束效應40 4.2.4 鋼筋材料模型41 4.3 鋼筋混凝土柱非線性行為模型44 4.3.1 柱端鋼筋滑移44 4.3.2 剪力非線性行為45 4.4 梁柱桿件元素48 4.5 柱體模型驗證48 4.5.1 Hsiao等人(2021)鋼筋混凝土單柱48 4.5.2 Kuo(2020) F-H-NC52 4.5.3 Kuo(2020) F-H-R/UHPC55 4.6 四層樓 RC 抗彎構架之耐震設計與分析59 4.6.1 結構基本說明59 4.6.2 載重組合之檢核60 4.6.3 斷面設計62 4.6.4 強柱弱梁之檢核64 4.6.5 結構分析64 4.7 地震力分析69 4.7.1 結構物週期估算69 4.7.2 計算設計地震力69 4.7.3 地震力之豎向分配72 第五章RC柱複合實驗之規劃及結果73 5.1 實驗規劃73 5.1.1 實驗參數及編號73 5.1.2 材料性質75 5.1.3 鋼筋混凝土柱設計80 5.1.4 上下基礎設計83 5.2 試體製作及施工84 5.2.1 鋼筋應變計位置84 5.3 加載歷時86 5.3.1 反覆載重實驗歷時86 5.3.2 複合實驗地震歷時87 5.4 實驗配置88 5.4.1 水平側力系統88 5.4.2 側向力偶系統89 5.4.3 軸力系統89 5.4.4 面外支撐系統89 5.4.5 致動器設置91 5.4.6 治具架設及試體安裝91 5.4.7 實驗場設備限制94 5.5 量測系統94 5.5.1 內部量測系統94 5.5.2 外部量測系統95 5.6 實驗流程100 5.7 複合實驗方式102 5.7.1 自由度控制102 5.7.2 歸零設置102 5.8 實驗過程及結果103 5.8.1 NC104 5.8.2 HPC111 5.8.3 HPC-L117 5.9 遲滯迴圈123 5.10 柱體鋼筋應變125 5.11 柱體曲率126 5.12 軸力歷時129 5.13 旋轉量131 第六章綜合討論134 6.1 水平向位移命令誤差134 6.2 邊界條件135 6.3 UHPC柱於複合實驗之結果比較138 6.4 構架整體行為139 6.5 實驗耗費時間141 6.6 柱體主應變143 6.7 OPENSEES有限元分析169 6.7.1 NC試體169 6.7.2 HPC試體170 6.7.3 HPC-L試體171 6.8 旋轉角角度控制測試174 6.9 多自由度控制可能性177 6.10 複合實驗設計流程178 第七章結論與建議180 參考文獻181 附錄A 柱體應變計數值185

    [1] Arêde, A. J. C. D. (1997). Seismic assessment of reinforced concrete frame structures with a new flexibility based element. Universidade do Porto (Portugal).
    [2] Bermudez, M., & Hung, C.-C. (2019). Shear behavior of ultra-high performance hybrid fiber reinforced concrete beams. International Interactive Symposium on Ultra-High Performance Concrete,
    [3] Committee, A. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary Building Code Requirements for Structural Concrete (ACI 318R-19).
    [4] Deng, H.-Z. (2006). A simplified method for nonlinear cyclic analysis of reinforced concrete structures: Direct and energy based formulations Carleton University].
    [5] Elwood, K. J. (2004). Modelling failures in existing reinforced concrete columns. Canadian Journal of Civil Engineering, 31(5), 846-859. https://doi.org/10.1139/l04-040
    [6] Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4), 476-484. <Go to ISI>://WOS:000267256900009
    [7] Elwood, K. J., & Moehle, J. P. (2005). Axial capacity model for shear-damaged columns. ACI Structural Journal, 102(4), 578.
    [8] Hakuno, M., Shidawara, M., & Hara, T. (1969). DYNAMIC DESTRUCTIVE TEST OF A CANTILEVER BEAM, CONTROLLED BY AN ANALOG-COMPUTER. Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
    [9] Hosinieh, M. M., Aoude, H., Cook, W. D., & Mitchell, D. (2015). Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading. Engineering Structures, 99, 388-401.
    [10] Hsiao, F.-P., Lu, L.-Y., & Yeh, S.-W. (2022). Hybrid testing application of OpenFresco in multi-physics substructure of seven-story RC frame. The Sixteenth National Conference on Structural Engineering and The Sixth National Conference on Earthquake Engineering,
    [11] Hsiao, F.-P., Weng, P.-W., Shen, W.-C., Li, Y.-A., Tsai, R.-J., & Hwang, S.-J. (2019). Experimental planning and structural collapse behavior of 7-story reinforced concrete building model under near-fault earthquakes. International conference in commemoration of 20th anniversary of the 1999 Chi-Chi Earthquake,
    [12] Hsiao, F., Weng, P., Shen, W., Li, Y., Tsai, R., & Hwang, S. (2021). Study on Structural Collapse Behavior of Reinforced Concrete Building Under Near-Fault Earthquakes. In EASEC16 (pp. 771-779). Springer.
    [13] Hung, C.-C., & Chueh, C.-Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
    [14] Hung, C.-C., El-Tawil, S., & Chao, S.-H. (2021). A review of developments and challenges for UHPC in structural engineering: behavior, analysis, and design. Journal of Structural Engineering, 147(9), 03121001.
    [15] Hung, C.-C., & Hu, F.-Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    [16] Hung, C.-C., Hu, F.-Y., & Yen, C.-H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    [17] Hung, C.-C., Kuo, C.-W., & Shao, Y. (2021). Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels. Journal of Building Engineering, 44, 103305.
    [18] Hung, C.-C., Lee, H.-S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
    [19] Hung, C.-C., Li, H., & Chen, H.-C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [20] Hung, C.-C., & Yen, C.-H. (2021). Compressive behavior and strength model of reinforced UHPC short columns. Journal of Building Engineering, 35, 102103.
    [21] Hung, C.-C., Yen, W.-M., & Yu, K.-H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    [22] Kakavand, M. A. (2012). Limit state material manual. available on opensees. berkeley. edu.
    [23] Kashani, M. M., Lowes, L. N., Crewe, A. J., & Alexander, N. A. (2016). Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement. Engineering Structures, 116, 163-177.
    [24] Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the structural division, 97(7), 1969-1990.
    [25] Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
    [26] Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, 264, 137-158.
    [27] McCrum, D. P., & Williams, M. S. (2016). An overview of seismic hybrid testing of engineering structures. Engineering Structures, 118, 240-261. https://doi.org/10.1016/j.engstruct.2016.03.039
    [28] McKenna F, F. G., Scott MH, Jeremic B. (2001). Open system for earthquake engineering simulation. http:// opensees.berkeley.edu
    [29] Melo, J., Varum, H., & Rossetto, T. (2015). Experimental cyclic behaviour of RC columns with plain bars and proposal for Eurocode 8 formula improvement. Engineering Structures, 88, 22-36.
    [30] Melo, J., Varum, H., & Rossetto, T. (2020). Numerical Modeling of RC Columns and a Modified Steel Model Proposal for Elements With Plain Bars. Frontiers in Built Environment, 210.
    [31] Mosqueda, G., Stojadinović, B., & Mahin, S. A. (2005). Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures. Earthquake Engineering Research Center, University of California Berkeley.
    [32] Saiidi, M., & Sozen, M. A. (1979). Simple and complex models for nonlinear seismic response of reinforced concrete structures.
    [33] Saouma, V., & Sivaselvan, M. (2014). Hybrid simulation: Theory, implementation and applications. CRC Press.
    [34] Sarebanha, A., Schellenberg, A. H., Schoettler, M. J., Mosqueda, G., & Mahin, S. A. (2019). Real-time hybrid simulation of seismically isolated structures with full-scale bearings and large computational models. Computer Modeling in Engineering & Sciences, 120(3), 693-717.
    [35] Schellenberg, A., Huang, Y., & Mahin, S. A. (2009). Structural FE-software coupling through the experimental software framework, OpenFresco.
    [36] Schellenberg, A., Kim, H. K., Takahashi, Y., Fenves, G. L., & Mahin, S. A. (2009). OpenFresco command language manual. University of California: Berkeley, CA, USA.
    [37] Schellenberg, A. H., Mahin, S. A., & Fenves, G. L. (2008). Advanced implementation of hybrid simulation. University of California, Berkeley.
    [38] Spencer, B., & Carrion, J. E. (2007). Real-time hybrid testing of semi-actively controlled structure with MR damper. 2nd International Conference on Advances in Experimental Structural Engineering, AESE 2007,
    [39] Terzic, V. (2011). Force-based element vs. Displacement-based element. University of Berkeley, OpenSees, NEES, & NEEScomm.
    [40] Yang, C.-Y., Cai, X.-S., Yuan, Y., & Ma, Y.-C. (2019). Hybrid simulation of soil station system response to two-dimensional earthquake excitation. Sustainability, 11(9), 2582.
    [41] 中國土木水利工程學會混凝土工程委員會. (2021). 混凝土工程設計規範(土木401-110).
    [42] 內政部營建署. (2021). 建築技術規則建築設計施工編.
    [43] 洪崇展, 郭家維, & 黃丞毅. (2020). 超高性能纖維混凝土於非韌性柱包覆補強工法之有效性. 中國土木水利工程學刊, 32(8), 693-699.
    [44] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51. https://doi.org/10.6653/MoCICHE/2017.04401.05
    [45] 郭家維. (2020). 超高性能纖維混凝土於RC柱之耐震補強效用.國立成功 大學土木工程學系學位論文. https://hdl.handle.net/11296/9efv65
    [46] 經濟部標準檢驗局. (1996). 中華民國國家標準 CNS2111 G2013 金屬材料拉伸試驗法.
    [47] 蕭齊揚. (2022). 預鑄UHPC管填充混凝土柱之抗耐震性能研究.國立成功 大學土木工程學系學位論文.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE