簡易檢索 / 詳目顯示

研究生: 王鈺棋
Wang, Yu-Chi
論文名稱: 發展具有螢光特性的蛋白包覆奈米顆粒促進細胞核輸送與光動力治療
Development of luminescent protein nanoparticles for enhanced nucleus delivery and photodynamic therapy
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 121
中文關鍵詞: 氧化蛋白質螢光影像細胞核光動力治療能量轉移
外文關鍵詞: Oxidative proteins, Fluorescence Imaging, Nucleus, Photodynamic Therapy (PDT), Energy Transfer
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已經有研究指出蛋白質容易在具有過氧化酶、UV高能輻射等環境下發生氧化修飾,但很少人針對熱輻射能氧化修飾蛋白的特性甚至是應用進行研究。本研究利用僅利用高熱加熱氧化修飾牛血清蛋白(BSA)自組裝形成具有藍螢光特性的奈米蛋白顆粒,能夠藉由其獨特的光學特性標定癌細胞的。此外,在研究過程中發現經過氧化修飾的奈米蛋白顆粒會受到近紅外光(1064 nm)激活產生單態氧(1O2)並應用於光動力治療。接著,利用綠色的水熱法一步合成將四氯金酸鹽(HAuCl4)與牛血清白蛋白(Bovine Serum Albumin, BSA)結合產生具有近紅外螢光的光學特性的牛血清白蛋白包覆金奈米團簇(BSA/Au NCs)。在本文中會探討BSA/Au NCs中蛋白質的結構和Au NCs的組成。在研究過程中亦發現BSA/Au NCs也同樣具有受1064 nm激活產生1O2進行光動力治療的特性。我們利用抑制細胞輸送入核的方法來探討BSA/Au NCs進入細胞核的機制。另外,BSA/Au NCs不僅可以作為藥物載體攜載MB光敏藥物,還可以降低MB光敏藥物本身具有細胞毒性的缺點,順利將藥物送入細胞核之外,甚至能夠促進能量轉移提高1O2的產生,有效改善光動力治療效果。

    Oxidative modification in proteins is occurred in usual when there are endo- and/or exogenous factors appeared, such as peroxidases, UV irradiation, and etc. In this study, we developed a simple thermal reaction of bovine serum albumin (BSA) protein to increase the intrinsic blue fluorescence, relying on the increment of the reaction temperatures, upon 365 nm-UV light excitation. Intriguingly, these BSA proteins were self-assembled by thermal induced oxidation and aggregation leading to form ~28 nm particle. reaction. These BSA nanoparticle performed good biocompatibility, which was suitable for fluorescence bio-imaging application. Confocal microscopy determined the luminescent BSA nanoparticle allowing to delivery into nucleus of T24 cancer cell as a nucleus transporter. Such oxidatively modified BSA proteins can be activated by exposing visible at 405–530 nm and near-infrared at 660-1064 nm lights to generate singlet oxygen (1O2) and applied to targeted photodynamic therapy of cancer cells. In addition, the strong red emission of the BSA nanoparticle could be fabricated once the loading Au NCs into the BSA capture to from BSA/Au NC. The composition of BSA/Au NC was carefully examined. Similar to the heated BSA nanoparticles, BSA/Au NCs could be triggered by 1064 nm laser light to generate 1O. To clarify the mechanism of nucleus translocation found in BSA/Au, importin inhibitors were used and nuclear pore complexes (NPC) were blocked to prevent from active path of nucleus entry. Furthermore, it was discovered that BSA/Au NCs could not only be as a well photosensitizer carrier, but also was able to promote the 1O2 generation for improving the PDT effects.

    中文摘要 ...............................................I Abstract ..............................................II 致謝 ..................................................III Contents ..............................................IV List of Schemes .......................................VII List of Figures ......................................VIII List of Tables .......................................XIV Chapter 1. Introduction ................................1 1-1. Biophotonic ....................................1 1-2. Photodynamic Therapy (PDT) .....................1 1-2-1. Mechanisms of PDT ..............................2 1-2-2. Photosensitizers (PS) ..........................2 1-2-3. Near-infrared II (NIR-II) Triggered PDT ........4 1-3. Energy Transfer ................................5 1-3-1. Förster Resonance Energy Transfer (FRET) .......5 1-3-2. Heavy Atom Effect ..............................5 1-4. Bioimaging .....................................6 1-4-1. Fluorescence ...................................7 1-4-2. Fluorescent Dye ................................7 1-4-3. Fluorescent Quantum Yield ......................7 1-4-4. Fluorescent Bioimaging .........................8 1-4-5. Membrane Targeting Bioimaging ..................8 1-4-6. Nucleus Translocation Bioimaging ...............8 1-5. Proteins .......................................10 1-5-1. Characteristics ................................10 1-5-2. Oxidative Modification of Proteins .............11 1-5-3. Development of Protein-Based Nanocarrier for Theranostics ...........................................12 1-6. Synthetic Methods and Application of BSA/Au NCs 13 1-6-1. Gold Nanoclusters (Au NCs) .....................15 1-6-2. Luminescent Au NCs .............................16 1-6-3. Mechanisms of Luminescent Few-Atom Au NCs ......16 1-6-4. Size-Dependent of Au NCs .......................17 1-6-5. Surface Ligands of Au NCs ......................18 1-7. Cancer .........................................18 1-7-1. Characteristics ................................18 1-7-2. Classification .................................19 1-7-3. T24 Cancer Cell ................................20 Chapter 2. Motivation ..................................34 Chapter 3. Method and Materials ........................35 3-1. Materials ......................................35 3-2. Equipment ......................................37 3-3. Solution Formula ...............................38 3-3-1. MTT Assay Working Solution .....................38 3-3-2. DAPI Stock Solution ............................38 3-4. Method .........................................38 3-4-1. Synthesis of Heated and UV-treated Amino Acids or BSA ....................................................38 3-4-2. Synthesis of BSA/Au Nanoclusters (BSA/Au NCs) ..38 3-4-3. Synthesis of BSA/Au-MB .........................39 3-4-4. Characterization ...............................39 3-4-5. Carboxyphenylboronic acid (CPBA) modification ..40 3-4-6. Fluorescein Isothiocyanate (FITC) Conjugation ..41 3-4-7. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) .............................41 3-4-8. MALDI-TOF Mass Spectrometry ....................45 3-4-9. RNO/imidazole for Photo-induced 1O2 Detection ..45 3-4-10. Terephthalic Acid (TA) Test for OH Radical (‧OH) Detection ..............................................46 3-4-11. Cellular Toxicity Test --- MTT Assay ...........47 3-4-12. In vitro PDT Efficacy in T24 Cancer Cells ......47 3-4-13. Fluorescent Imaging of Cellular Uptakes in T24 Cancer Cells ...........................................48 3-4-14. Mechanisms of BSA/Au-BA Transport into Cell Nucleus ................................................49 Chapter 4. Results and Discussion ......................56 4-1. Size of Heated BSA .............................56 4-2. Characterization of Heated BSA .................57 4-3. Characterization of Oxidized BSA ...............59 4-4. Size of Oxidized BSA ...........................60 4-5. Type-II PDT of Heated BSA ......................61 4-6. Cellular Toxicity of Heated BSA ................62 4-7. Cellular Internalization of Oxidized BSA .......62 4-8. In vitro PDT Efficacy of Heated BSA-BA .........64 4-9. Characterization of BSA/Au NCs .................65 4-10. Structure of BSA/Au NCs ........................66 4-11. Optical Properties of BSA/Au NCs ...............68 4-12. Composition of BSA/Au NCs ......................69 4-13. Size of BSA/Au NCs .............................70 4-14. Type-II PDT of BSA/Au NCs ......................71 4-15. In vitro PDT Efficacy of BSA/Au-BA .............73 4-16. Cellular Internalization of BSA/Au-BA ..........74 4-17. Mechanisms of BSA/Au-BA Transport into Cell Nucleus ................................................76 4-18. Interactions between BSA/Au-BA and DNA .........77 4-19. BSA/Au NC as a Drug Carrier ....................78 4-20. Mechanism of Energy Transfer between BSA/Au NCs and MB .................................................79 4-21. Cellular Internalization of BSA/Au-MB/BA .......81 Chapter 5. Conclusion .................................111 References ............................................113

    1. Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R., Generation of Singlet Oxygen by Photoexcited Au25(SR)18 Clusters. Chem. Mater. 2014, 26 (9), 2777-2788.
    2. Liao, M. Y.; Lai, P. S.; Yu, H. P.; Lin, H. P.; Huang, C. C., Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chem. Commun. (Camb) 2012, 48 (43), 5319-21.
    3. Robertson, C. A.; Evans, D. H.; Abrahamse, H., Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol., B 2009, 96 (1), 1-8.
    4. Debele, T. A.; Peng, S.; Tsai, H. C., Drug Carrier for Photodynamic Cancer Therapy. Int. J. Mol. Sci. 2015, 16 (9), 22094-136.
    5. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J., Photodynamic therapy of cancer: an update. CA: Cancer J. Clin. 2011, 61 (4), 250-81.
    6. Silva, Z. S., Jr.; Bussadori, S. K.; Fernandes, K. P.; Huang, Y. Y.; Hamblin, M. R., Animal models for photodynamic therapy (PDT). Biosci. Rep. 2015, 35 (6).
    7. Abrahamse, H.; Hamblin, M. R., New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473 (4), 347-64.
    8. Makdoumi, K.; Backman, A.; Mortensen, J.; Crafoord, S., Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefes Arch. Clin. Exp. Ophthalmol 2010, 248 (2), 207-12.
    9. Ahn, J. C.; Kang, J. W.; Shin, J. I.; Chung, P. S., Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int. J. Oncol. 2012, 41 (6), 2184-90.
    10. Wainwright, M.; Crossley, K. B., Methylene Blue--a therapeutic dye for all seasons? J. Chemother. 2002, 14 (5), 431-43.
    11. Tseng, S. P.; Hung, W. C.; Chen, H. J.; Lin, Y. T.; Jiang, H. S.; Chiu, H. C.; Hsueh, P. R.; Teng, L. J.; Tsai, J. C., Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates. J. Microbiol. Immunol. Infect. 2017, 50 (1), 46-54.
    12. He, H.; Lo, P. C.; Yeung, S. L.; Fong, W. P.; Ng, D. K., Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chem Commun (Camb) 2011, 47 (16), 4748-50.
    13. Stacey, O. J.; Pope, S. J. A., New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Advances 2013, 3 (48), 25550.
    14. Heinemann, F.; Karges, J.; Gasser, G., Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy. Acc. Chem. Res. 2017, 50 (11), 2727-2736.
    15. Doherty, R. E.; Sazanovich, I. V.; McKenzie, L. K.; Stasheuski, A. S.; Coyle, R.; Baggaley, E.; Bottomley, S.; Weinstein, J. A.; Bryant, H. E., Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand. Sci. Rep. 2016, 6, 22668.
    16. Nardon, C.; Chiara, F.; Brustolin, L.; Gambalunga, A.; Ciscato, F.; Rasola, A.; Trevisan, A.; Fregona, D., Gold(III)-pyrrolidinedithiocarbamato Derivatives as Antineoplastic Agents. ChemistryOpen 2015, 4 (2), 183-91.
    17. Mou, J.; Lin, T.; Huang, F.; Shi, J.; Chen, H., A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy. Theranostics 2017, 7 (6), 1531-1542.
    18. Qi, Z.-D.; Li, D.-W.; Jiang, P.; Jiang, F.-L.; Li, Y.-S.; Liu, Y.; Wong, W.-K.; Cheah, K.-W., Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J. Mater. Chem. 2011, 21 (8), 2455-2458.
    19. Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C. S.; Zhang, W.; Han, X., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
    20. Jovanović, S. P.; Syrgiannis, Z.; Marković, Z. M.; Bonasera, A.; Kepić, D. P.; Budimir, M. D.; Milivojević, D. a. D.; Spasojević, V. D.; Dramićanin, M. D.; Pavlović, V. B., Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Appl. Mater. Interfaces 2015, 7 (46), 25865-25874.
    21. Vankayala, R.; Kuo, C.-L.; Nuthalapati, K.; Chiang, C.-S.; Hwang, K. C., Nucleus-Targeting Gold Nanoclusters for Simultaneous In Vivo Fluorescence Imaging, Gene Delivery, and NIR-Light Activated Photodynamic Therapy. Adv. Funct. Mater. 2015, 25 (37), 5934-5945.
    22. Li, Q.; Hong, L.; Li, H.; Liu, C., Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens. Bioelectron. 2017, 89, 477-482.
    23. Ding, D.; Guo, W.; Guo, C.; Sun, J.; Zheng, N.; Wang, F.; Yan, M.; Liu, S., MoO 3− x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 2017, 9 (5), 2020-2029.
    24. Zhao, J.; Zhong, D.; Zhou, S., NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem., B. 2018.
    25. Yu, Q.; Sun, J.; Zhu, X.; Qiu, L.; Xu, M.; Liu, S.; Ouyang, J.; Liu, J., Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J. Mater. Chem., B. 2017, 5 (30), 6081-6096.
    26. Guo, W.; Guo, C.; Zheng, N.; Sun, T.; Liu, S., CsxWO3 Nanorods Coated with Polyelectrolyte Multilayers as a Multifunctional Nanomaterial for Bimodal Imaging‐Guided Photothermal/Photodynamic Cancer Treatment. Adv. Mater. 2017, 29 (4).
    27. Hussain, S. A., An introduction to fluorescence resonance energy transfer (FRET). arXiv preprint arXiv:0908.1815 2009.
    28. Sekar, R. B.; Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Bio. 2003, 160 (5), 629-633.
    29. Lower, S.; El-Sayed, M., The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66 (2), 199-241.
    30. Valeur, B.; Berberan-Santos, M. N., Molecular Fluorescence: Principles and Applications. John Wiley & Sons: 2012.
    31. Kubista, M.; Aakerman, B.; Norden, B., Characterization of interaction between DNA and 4', 6-diamidino-2-phenylindole by optical spectroscopy. Biochem. 1987, 26 (14), 4545-4553.
    32. Wolfbeis, O. S., An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44 (14), 4743-4768.
    33. Ma, D. H.; Kim, D.; Akisawa, T.; Lee, K. H.; Kim, K. T.; Ahn, K. H., An FITC‐BODIPY FRET Couple: Application to Selective, Ratiometric Detection and Bioimaging of Cysteine. Chem. Asian J. 2015, 10 (4), 894-902.
    34. Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T., Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal. Chem. 2014, 87 (1), 216-229.
    35. Yang, L.; Mao, H.; Wang, Y. A.; Cao, Z.; Peng, X.; Wang, X.; Duan, H.; Ni, C.; Yuan, Q.; Adams, G., Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009, 5 (2), 235-243.
    36. Wiley, D. T.; Webster, P.; Gale, A.; Davis, M. E., Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. of the Natl. Acad. Sci. 2013, 110 (21), 8662-8667.
    37. Wang, X.; Xia, N.; Liu, L., Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int. J. Mol. Sci. 2013, 14 (10), 20890-20912.
    38. Xu, S.; Olenyuk, B. Z.; Okamoto, C. T.; Hamm-Alvarez, S. F., Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 2013, 65 (1), 121-138.
    39. Oldenburg, D.; Ru, Y.; Weinhaus, B.; Cash, S.; Theodorescu, D.; Guin, S., CD44 and RHAMM are essential for rapid growth of bladder cancer driven by loss of Glycogen Debranching Enzyme (AGL). BMC Cancer 2016, 16 (1), 713.
    40. Stewart, M., Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 2007, 8 (3), 195.
    41. Truant, R.; Cullen, B. R., The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin β-dependent nuclear localization signals. Mol. Cell. Biol. 1999, 19 (2), 1210-1217.
    42. Davis, M. E., Non-viral gene delivery systems. Curr. Opin. in Biotechnol. 2002, 13 (2), 128-131.
    43. Wang, S.; Lu, Y.; Yin, M.-X.; Wang, C.; Wu, W.; Li, J.; Wu, W.; Ge, L.; Hu, L.; Zhao, Y., Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal. J. Biol. Chem. 2016, 291 (15), 7926-7937.
    44. Hübner, S.; Xiao, C.-Y.; Jans, D. A., The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J. Biol. Chem. 1997, 272 (27), 17191-17195.
    45. Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. 2000, 97 (24), 13003-13008.
    46. Khan, S.; Verma, N. C.; Chethana; Nandi, C. K., Carbon Dots for Single-Molecule Imaging of the Nucleolus. ACS Appl. Nano Mater. 2018, 1 (2), 483-487.
    47. Zhu, Y. X.; Jia, H. R.; Pan, G. Y.; Ulrich, N. W.; Chen, Z.; Wu, F. G., Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. J. Am. Chem. Soc. 2018, 140 (11), 4062-4070.
    48. Budhathoki-Uprety, J.; Langenbacher, R. E.; Jena, P. V.; Roxbury, D.; Heller, D. A., A Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical Pathway. ACS Nano 2017, 11 (4), 3875-3882.
    49. Wang, X.; Wang, Y.; He, H.; Ma, X.; Chen, Q.; Zhang, S.; Ge, B.; Wang, S.; Nau, W. M.; Huang, F., Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells. ACS Appl. Mater. Interfaces 2017, 9 (21), 17799-17806.
    50. Bacher, G.; Szymanski, W. W.; Kaufman, S. L.; Zollner, P.; Blaas, D.; Allmaier, G., Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J. Mass. Spectrom. 2001, 36 (9), 1038-52.
    51. Erickson, H. P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 2009, 11, 32-51.
    52. Davies, M. J., The oxidative environment and protein damage. BBA-Proteins and Proteomics 2005, 1703 (2), 93-109.
    53. Davies, M. J., Protein oxidation and peroxidation. Biochem. J. 2016, 473 (7), 805-25.
    54. Giménez, R. E.; Vargová, V.; Rey, V.; Turbay, M. B. E.; Abatedaga, I.; Vieyra, F. E. M.; Zanini, V. I. P.; Ortiz, J. H. M.; Katz, N. E.; Ostatná, V., Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization. Free Radical Biol. Med. 2016, 94, 99-109.
    55. Kristo, E.; Hazizaj, A.; Corredig, M., Structural changes imposed on whey proteins by UV irradiation in a continuous UV light reactor. J. Agric. Food Chem. 2012, 60 (24), 6204-9.
    56. Cheng, H.; Liu, H.; Zhang, Y.; Zou, G., Interaction of the docetaxel with human serum albumin using optical spectroscopy methods. J. Lumin. 2009, 129 (10), 1196-1203.
    57. Zheng, Y.-R.; Suntharalingam, K.; Johnstone, T. C.; Yoo, H.; Lin, W.; Brooks, J. G.; Lippard, S. J., Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc. 2014, 136 (24), 8790-8798.
    58. Gao, F.-P.; Lin, Y.-X.; Li, L.-L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J.-G.; Li, J.-Y.; Würthner, F.; Wang, H., Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 35 (3), 1004-1014.
    59. Chen, Q.; Liang, C.; Wang, X.; He, J.; Li, Y.; Liu, Z., An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 2014, 35 (34), 9355-9362.
    60. Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V., Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 2002, 54 (1), 135-147.
    61. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 136-151.
    62. Wang, K.; Zhang, Y.; Wang, J.; Yuan, A.; Sun, M.; Wu, J.; Hu, Y., Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.
    63. Chen, Q.; Wang, X.; Wang, C.; Feng, L.; Li, Y.; Liu, Z., Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS nano 2015, 9 (5), 5223-5233.
    64. Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z., A Self‐Assembled Albumin‐Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Adv. Mater. 2015, 27 (43), 6820-6827.
    65. Samanta, B.; Yan, H.; Fischer, N. O.; Shi, J.; Jerry, D. J.; Rotello, V. M., Protein-passivated Fe 3 O 4 nanoparticles: low toxicity and rapid heating for thermal therapy. J. Mater. Chem. 2008, 18 (11), 1204-1208.
    66. Wang, Q.; Kuo, Y.; Wang, Y.; Shin, G.; Ruengruglikit, C.; Huang, Q., Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J. Phys. Chem., B. 2006, 110 (34), 16860-16866.
    67. Le Guével, X.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotech. 2011, 22 (27), 275103.
    68. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131 (3), 888-889.
    69. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci. Rep. 2017, 7, 40298.
    70. Wu, D.; Qi, W.; Liu, C.; Zhang, Q., A “turn-on” fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Anal. Bioanal. Chem. 2017, 409 (10), 2539-2546.
    71. Wu, J.; Jiang, K.; Wang, X.; Wang, C.; Zhang, C., On− off− on gold nanocluster-based near infrared fluorescent probe for recognition of Cu (II) and vitamin C. Microchim. Acta 2017, 184 (5), 1315-1324.
    72. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A., Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Controlled Release 2012, 157 (2), 168-182.
    73. Durgadas, C.; Sharma, C.; Sreenivasan, K., Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011, 136 (5), 933-940.
    74. Khandelia, R.; Bhandari, S.; Pan, U. N.; Ghosh, S. S.; Chattopadhyay, A., Gold nanocluster embedded albumin nanoparticles for two‐photon imaging of cancer cells accompanying drug delivery. Small 2015, 11 (33), 4075-4081.
    75. Singh, P.; Singh, H.; Castro-Aceituno, V.; Ahn, S.; Kim, Y. J.; Yang, D. C., Bovine serum albumin as a nanocarrier for the efficient delivery of ginsenoside compound K: preparation, physicochemical characterizations and in vitro biological studies. RSC Adv. 2017, 7 (25), 15397-15407.
    76. Yang, S.; Jiang, Z.; Chen, Z.; Tong, L.; Lu, J.; Wang, J., Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta 2015, 182 (11-12), 1911-1916.
    77. Yamamoto, M.; Osaka, I.; Yamashita, K.; Hasegawa, H.; Arakawa, R.; Kawasaki, H., Effects of ligand species and cluster size of biomolecule-protected Au nanoclusters on eff iciency of singlet-oxygen generation. J. Lumin. 2016, 180, 315-320.
    78. Chuang, K.-T.; Lin, Y.-W., Microwave-Assisted Formation of Gold Nanoclusters Capped in Bovine Serum Albumin and Exhibiting Red or Blue Emission. J. Phys. Chem., C. 2017, 121 (48), 26997-27003.
    79. Watson, E.; Wilk, S., Assessment of cerebrospinal fluid levels of dopamine metabolites by gas chromatography. Psychopharmacologia 1975, 42 (1), 57-62.
    80. Oak, J. N.; Oldenhof, J.; Van Tol, H. H., The dopamine D4 receptor: one decade of research. Eur. J. Pharmacol. 2000, 405 (1-3), 303-327.
    81. Kreibig, U.; Vollmer, M., Optical Properties of Metal Clusters. Springer Science & Business Media: 2013; Vol. 25.
    82. Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4 (14), 4073-83.
    83. Jin, R.; Zhu, Y.; Qian, H., Quantum‐Sized Gold Nanoclusters: Bridging the Gap between Organometallics and Nanocrystals. Chem. Eur. J. 2011, 17 (24), 6584-6593.
    84. Li, H.-W.; Yue, Y.; Liu, T.-Y.; Li, D.; Wu, Y., Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver (I) ions in aqueous solutions. J. Phys. Chem. C 2013, 117 (31), 16159-16165.
    85. Poderys, V.; Matulionytė-Safinė, M.; Rupšys, D.; Rotomskis, R., Protein stabilized Au nanoclusters: spectral properties and photostability. Lith. J. Phys. 2016, 56 (1).
    86. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
    87. Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93 (7), 077402.
    88. Duan, H.; Nie, S., Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129 (9), 2412-2413.
    89. Habeeb Muhammed, M. A.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T., Luminescent Quantum Clusters of Gold in Bulk by Albumin‐Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal‐Enhanced Luminescence, and Biolabeling. Chem. Eur. J. 2010, 16 (33), 10103-10112.
    90. Zhou, R.; Shi, M.; Chen, X.; Wang, M.; Chen, H., Atomically Monodispersed and Fluorescent Sub‐Nanometer Gold Clusters Created by Biomolecule‐Assisted Etching of Nanometer‐Sized Gold Particles and Rods. Chem. Eur. J. 2009, 15 (19), 4944-4951.
    91. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R., Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130 (18), 5883-5885.
    92. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson III, T.; Ramakrishna, G., Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J. Phys. Chem., C. 2010, 114 (51), 22417-22423.
    93. Aaltonen, V.; Boström, P. J.; Söderström, K.-O.; Hirvonen, O.; Tuukkanen, J.; Nurmi, M.; Laato, M.; Peltonen, J., Urinary bladder transitional cell carcinogenesis is associated with down-regulation of NF1 tumor suppressor gene in vivo and in vitro. Am. J. Pathol. 1999, 154 (3), 755-765.
    94. Steele, J. G.; Rowlatt, C.; Sandall, J. K.; Franks, L. M., Identification of exposed surface glycoproteins of four human bladder carcinoma cell lines. Biochimica et Biophysica Acta (BBA)-Biomembranes 1983, 732 (1), 219-228.
    95. Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L., Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem., B. 2002, 106 (13), 3410-3415.
    96. Kirdaite, G.; Lange, N.; Busso, N.; Van Den Bergh, H.; Kucera, P.; So, A., Protoporphyrin IX photodynamic therapy for synovitis. Arthritis Rheum 2002, 46 (5), 1371-8.
    97. Biswas, R.; Moon, J. H.; Ahn, J. C., Chlorin e6 derivative radachlorin mainly accumulates in mitochondria, lysosome and endoplasmic reticulum and shows high affinity toward tumors in nude mice in photodynamic therapy. Photochem. Photobiol. 2014, 90 (5), 1108-18.
    98. Shafirstein, G.; Rigual, N. R.; Arshad, H.; Cooper, M. T.; Bellnier, D. A.; Wilding, G.; Tan, W.; Merzianu, M.; Henderson, B. W., Photodynamic therapy with 3-(1'-hexyloxyethyl) pyropheophorbide-a for early-stage cancer of the larynx: Phase Ib study. Head. Neck. 2016, 38 Suppl 1, E377-83.
    99. Soriano, J.; Villanueva, A.; Stockert, J. C.; Canete, M., Vehiculization determines the endocytic internalization mechanism of Zn(II)-phthalocyanine. Histochem. Cell Biol. 2013, 139 (1), 149-60.
    100. Sharma, K. V.; Davids, L. M., Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol. Int. 2012, 36 (12), 1261-6.
    101. Deng, H.; Liu, X.; Xie, J.; Yin, R.; Huang, N.; Gu, Y.; Zhao, J., Quantitative and site-directed chemical modification of hypocrellins toward direct drug delivery and effective photodynamic activity. J. Med. Chem. 2012, 55 (5), 1910-9.
    102. Ali, M. F., Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal. Lasers Med. Sci. 2011, 26 (2), 267-75.
    103. Nam, J. S.; Kang, M. G.; Kang, J.; Park, S. Y.; Lee, S. J.; Kim, H. T.; Seo, J. K.; Kwon, O. H.; Lim, M. H.; Rhee, H. W.; Kwon, T. H., Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications. J. Am. Chem. Soc. 2016, 138 (34), 10968-77.
    104. Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C., First Demonstration of Gold Nanorods‐Mediated Photodynamic Therapeutic Destruction of Tumors via Near Infra‐Red Light Activation. Small 2014, 10 (8), 1612-1622.
    105. Gao, L.; Liu, R.; Gao, F.; Wang, Y.; Jiang, X.; Gao, X., Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS nano 2014, 8 (7), 7260-7271.
    106. Vankayala, R.; Lin, C.-C.; Kalluru, P.; Chiang, C.-S.; Hwang, K. C., Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomater. 2014, 35 (21), 5527-5538.
    107. You, Q.; Sun, Q.; Yu, M.; Wang, J.; Wang, S.; Liu, L.; Cheng, Y.; Wang, Y.; Song, Y.; Tan, F., BSA–Bioinspired Gadolinium Hybrid-Functionalized Hollow Gold Nanoshells for NIRF/PA/CT/MR Quadmodal Diagnostic Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9 (46), 40017-40030.
    108. Kraljić, I.; Mohsni, S. E., A new method for the detection of singlet oxygen in aqueous solutions. Photochemistry and Photobiology 1978, 28 (4‐5), 577-581.
    109. Kanazawa, S.; Kawano, H.; Watanabe, S.; Furuki, T.; Akamine, S.; Ichiki, R.; Ohkubo, T.; Kocik, M.; Mizeraczyk, J., Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci. Technol. 2011, 20 (3), 034010.
    110. Chib, R.; Butler, S.; Raut, S.; Shah, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I., Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters. J. Lumin. 2015, 168, 62-68.
    111. Cho, Y.-T.; Chen, Y.-S.; Hu, J.-L.; Shiea, J.; Yeh, S. M.; Chen, H.-C.; Lee, Y.-C.; Wu, D.-C., The study of interferences for diagnosing albuminuria by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Clinica. Chimica. Acta 2012, 413 (9-10), 875-882.
    112. Voicescu, M.; Ionescu, S.; Angelescu, D. G., Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J. Nanoparticle Res. 2012, 14 (10), 1174.
    113. Davies, K.; Delsignore, M.; Lin, S., Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 1987, 262 (20), 9902-9907.
    114. Elliott, A.; Ambrose, E., Structure of synthetic polypeptides. Nature 1950, 165 (4206), 921.
    115. Bandekar, J.; Krimm, S., Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of β-turns. Proc. Natl. Acad Sci. 1979, 76 (2), 774-777.
    116. Cai, S.; Fujii, N.; Saito, T.; Fujii, N., Simultaneous ultraviolet B-induced photo-oxidation of tryptophan/tyrosine and racemization of neighboring aspartyl residues in peptides. Free Radical Biol. Med. 2013, 65, 1037-1046.
    117. Fukunaga, Y.; KATSURAGI, Y.; IZUMI, T.; SAKIYAMA, F., Fluorescence characteristics of kynurenine and N′-formylkynurenine, their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme. J. Biochem. 1982, 92 (1), 129-141.
    118. Malencik, D.; Anderson, S., Dityrosine as a product of oxidative stress and fluorescent probe. Amino acids 2003, 25 (3-4), 233-247.
    119. Amos, D. B.; Hibbs, J. B., The macrophage as a tumoricidal effector cell: a review of in vivo and in vitro studies on the mechanism of the activated macrophage nonspecific cytotoxic reaction. In The Macrophage in Neoplasia, Elsevier: 1976; pp 83-111.
    120. Keller, R., Cytostatic and cytocidal effects of activated macrophages. In Immunobiology of the Macrophage, Elsevier: 1976; pp 487-508.
    121. Holzwarth, G.; Doty, P., The ultraviolet circular dichroism of polypeptides1. J. the Am. Chem. Soc. 1965, 87 (2), 218-228.
    122. Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochem. 1969, 8 (10), 4108-4116.
    123. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876.
    124. Zhang, P.; Wang, Y.; Yin, Y., Facile fabrication of a gold nanocluster-based membrane for the detection of hydrogen peroxide. Sensors 2016, 16 (7), 1124.
    125. Schamel, M.; Barralet, J. E.; Groll, J.; Gbureck, U., In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics. Biomater. Res. 2017, 21 (1), 10.
    126. Meng, L.; Yin, J.-h.; Yuan, Y.; Xu, N., Near-infrared fluorescence probe: BSA-protected gold nanoclusters for the detection of metronidazole and related nitroimidazole derivatives. Anal. Methods 2017, 9 (5), 768-773.
    127. Yao, Q.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D.-e.; Xie, J., Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8 (1), 927.
    128. Reimers, J. R.; Ford, M. J.; Halder, A.; Ulstrup, J.; Hush, N. S., Gold surfaces and nanoparticles are protected by Au (0)–thiyl species and are destroyed when Au (I)–thiolates form. Proc Nat. Acad. Sci. 2016, 113 (11), E1424-E1433.
    129. Ashwell, G. J.; Williams, A. T.; Barnes, S. A.; Chappell, S. L.; Phillips, L. J.; Robinson, B. J.; Urasinska-Wojcik, B.; Wierzchowiec, P.; Gentle, I. R.; Wood, B. J., Self-Assembly of Amino− Thiols via Gold− Nitrogen Links and Consequence for in situ Elongation of Molecular Wires on Surface-Modified Electrodes. J. Phys. Chem C 2011, 115 (10), 4200-4208.
    130. Zang, Y.; Pinkard, A.; Liu, Z.-F.; Neaton, J. B.; Steigerwald, M. L.; Roy, X.; Venkataraman, L., Electronically Transparent Au–N Bonds for Molecular Junctions. J. Am. Chem. Soc 2017, 139 (42), 14845-14848.
    131. Sandin, P.; Fitzpatrick, L. W.; Simpson, J. C.; Dawson, K. A., High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS nano 2012, 6 (2), 1513-1521.
    132. Ali, M. R.; Wu, Y.; Ghosh, D.; Do, B. H.; Chen, K.; Dawson, M. R.; Fang, N.; Sulchek, T. A.; El-Sayed, M. A., Nuclear membrane-targeted gold nanoparticles inhibit cancer cell migration and invasion. ACS nano 2017, 11 (4), 3716-3726.
    133. Geisow, M. J.; Evans, W. H., pH in the endosome: measurements during pinocytosis and receptor-mediated endocytosis. Exp. Cell Res. 1984, 150 (1), 36-46.
    134. Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F., In vitro demonstration of the heavy-atom effect for photodynamic therapy. J. Am. Chem. Soc. 2004, 126 (34), 10619-10631.
    135. Alford, R.; Simpson, H. M.; Duberman, J.; Hill, G. C.; Ogawa, M.; Regino, C.; Kobayashi, H.; Choyke, P. L., Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 2009, 8 (6), 7290.2009. 00031.
    136. Yang, W.; Miller, J.-e. K.; Carrillo-Reid, L.; Pnevmatikakis, E.; Paninski, L.; Yuste, R.; Peterka, D. S., Simultaneous multi-plane imaging of neural circuits. Neuron 2016, 89 (2), 269-284.
    137. Wagstaff, K. M.; Sivakumaran, H.; Heaton, S. M.; Harrich, D.; Jans, D. A., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J. 2012, 443 (3), 851-856.
    138. Soderholm, J. F.; Bird, S. L.; Kalab, P.; Sampathkumar, Y.; Hasegawa, K.; Uehara-Bingen, M.; Weis, K.; Heald, R., Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 2011, 6 (7), 700-708.
    139. Gillard, M.; Jia, Z.; Hou, J. J. C.; Song, M.; Gray, P. P.; Munro, T. P.; Monteiro, M. J., Intracellular trafficking pathways for nuclear delivery of plasmid DNA complexed with highly efficient endosome escape polymers. Biomacromolecules 2014, 15 (10), 3569-3576.
    140. Bhunia, D.; Mondal, P.; Das, G.; Saha, A.; Sengupta, P.; Jana, J.; Mohapatra, S.; Chatterjee, S.; Ghosh, S., Spatial Position Regulates Power of Tryptophan: Discovery of a Major-Groove-Specific Nuclear-Localizing, Cell-Penetrating Tetrapeptide. J. Am. Chem. Soc. 2018, 140 (5), 1697-1714.
    141. Chen, Q.; Liu, Z., Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv. Mater. 2016, 28 (47), 10557-10566.
    142. Wagner, M.; Suarez, E.; Theodoro, T.; Machado Filho, C.; Gama, M.; Tardivo, J.; Paschoal, F.; Pinhal, M., Methylene blue photodynamic therapy in malignant melanoma decreases expression of proliferating cell nuclear antigen and heparanases. Clin. exp. dermatol. 2012, 37 (5), 527-533.
    143. Daghastanli, N. A.; Itri, R.; Baptista, M. S., Singlet Oxygen Reacts with 2′, 7′‐Dichlorodihydrofluorescein and Contributes to the Formation of 2′, 7′‐Dichlorofluorescein. Photochem. Photobiol. 2008, 84 (5), 1238-1243.

    下載圖示 校內:2023-07-15公開
    校外:2023-07-15公開
    QR CODE