簡易檢索 / 詳目顯示

研究生: 楊詠鈞
Yang, Yuan-Chun
論文名稱: 奈米氮化鋁粉體之合成製程開發
Process development for synthesis of nano-scale aluminum nitride powder
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 127
中文關鍵詞: α相氧化鋁奈米氮化鋁熱碳還原法溶液燃燒合成法
外文關鍵詞: carbothermal reduction method, aluminum nitride, α-alumina, solution combustion method
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究為奈米級氮化鋁粉體及其中間產物氧化鋁之合成與生成機制探討,研究方法悉以溶液燃燒合成法結合熱碳還原法改善傳統熱碳還原法之反應物混合不均勻及反應溫度過高之關鍵問題,研究以氧化劑硝酸鋁搭配三種不同之還原劑:尿素、氨基乙酸及檸檬酸,並以水溶性化合物蔗糖為碳源,以反應物劑量比、鍛燒時間及溫度、氮化溫度為變數進行研究。
    於氧化鋁合成部份,以尿素為還原劑之實驗組別,產物在合成後便為微米級α相氧化鋁,且可利用調整不同硝酸鋁/尿素比例控制其比表面積,比表面積最高值為100 m2/g。以檸檬酸及氨基乙酸為實驗之組別,因產物內有殘碳存在,必須經由鍛燒步驟方可得到微米級之α相氧化鋁,比表面積之最高值約為11 m2/g。
    於氮化鋁合成部份,實驗結果顯示各還原劑組別皆可在低於傳統熱碳還原法之反應溫度下(<1600°C)合成奈米級氮化鋁粒子,並可利用調整反應溫度及碳源含量進而控制產物之粒徑、比表面積值及氧含量。以尿素為還原劑之最佳產物粒徑落於15-20 nm間,最佳比表面積值約為100 m2/g,氧含量之最佳值約為4 wt%;以氨基乙酸為還原劑之最佳產物粒徑落於15-20 nm間,最佳比表面積值約為140 m2/g,氧含量之最佳值約為3.6wt %;檸檬酸因本身可為碳源,以其為還原劑之實驗組別產物粒徑為三種還原劑組別中最小,最佳產物粒徑約為10 nm,最大比表面積為180 m2/g,氧含量之最佳值為3wt %。

    In this thesis, the synthesis process and reaction mechanism of nano-scale aluminum nitride powder and its precursor alumina powder were developed by using “modified carbothermal reduction method”, which combined solution combustion method with traditional carbothermal reduction method. In the meantime, the uniformity of precursor and the reaction temperature were expected to be improved via this modified method. Starting materials included aluminum nitrate as oxidant, urea, glycine, citrate acid as reductant and sucrose as carbon source. In addition, the effects of oxidant/reducdant/carbon ratio, calcined temperature, duration of calcination, nitridation temperature have been selected as experimental parameter.
    In alumina synthesis part, the as-burnt product of experimental groups using urea as reductant was characterized to be fine particle α-alumina, and the specific area of resultant product can be controlled by adjusting oxidant/reductant ratio, the maximum specific area value in this group is about 100 m2/g. Because of carbon residual problem, the as-burnt product of experimental groups using glycine and citrate as reductant were amorphous. In order to obtain fine particle α-alumina, as-burnt product needs to be calcined at high temperature in air, the maximum specific area of final product in both groups is merely about 11 m2/g.
    In aluminum nitride synthesis part, the experimental results show that the final products in certain circumstances were exactly nano-sized aluminum nitride no matter what reductant was used, and the reaction temperature was much lower than traditional carbothermal reduction method(<1600°C). By adjusting the reaction temperature and carbon content, the particle size, specific area and oxygen content can be controlled. Moreover, the optimum results in every group are showed as follows: among the experimental groups using urea as reductant, the minimum particle size is about 15-20nm while the maximum specific area value is about 100 m2/g and the optimum oxygen content value is around 4 wt%. In the experimental groups using glycine as reductant, the minimum particle size is about 15-20nm while the maximum specific area value and the optimum oxygen content value show about 140 m2/g and 3.6 wt% respectively. Because the citrate itself can be either reductant or carbon source, the experimental groups using citrate as reductant have the smallest particle size when compared with others, the minimum particle size in this group is about 10 nm, the maximum specific area value is about 180 m2/g and the optimum oxygen content value is around 3 wt%.

    中文摘要………………………………………………………………. I 英文摘要……………………………………………………………. III 目錄…………...………………………………………………………V 圖表索引……….………………………………………………..…VII 第一章 緒論………...………………………………………….…..1 1-1 前言………….……………………………………………….….1 1-2 研究目的............................................3 第二章 文獻回顧.........................................4 2-1 氧化鋁物理及化學性質………….……………………….…….4 2-2 氧化鋁水合物之種類與結晶構造……….……………….…….5 2-3 氧化鋁之種類與結晶構造………….…………………….…….8 2-4 氧化鋁合成方法…………………….…………………….…...11 2-5 溶液燃燒合成法………………….…………………………....15 2-6 氮化鋁物理及化學性質………....………....19 2-7 氮化鋁合成方法…………….………………………………....21 2-8 熱碳還原法……………….…………………………………....25 第三章 實驗材料與方法 ……………………..…….....30 3-1 實驗藥品……………...……………..……………..…………31 3-2 反應理論值計算……………………...………………………32 3-3 實驗設備與分析儀器…………...……………………………34 3-4 實驗方法與分析步驟…………...……………………………35 3-5 實驗設計與架構.......................................41 第四章 結果與討論........…………………………….…….…43 4-1反應物性質探討……………………………...……………….43 4-2以尿素為還原劑合成氧化鋁………………………...…..…...45 4-3以氨基乙酸為還原劑合成氧化鋁…………...…………….....51 4-4以檸檬酸為還原劑合成氧化鋁………...…………..………...61 4-5不同還原劑合成氧化鋁之綜合比較…...……………..……...72 4-6以尿素為還原劑合成氮化鋁……...…….….…….….......73 4-7以氨基乙酸為還原劑合成氮化鋁……...………………..…...86 4-8以檸檬酸為還原劑合成氮化鋁…………..……….………….98 4-9不同還原劑合成氮化鋁之綜合比較…….………….………112 第五章 結論…………………………………………………… .114 參考文獻………………………………………………………….116

    1. W.D.Callister,JR.,Materials science and enginnering:an introduction, John Wiley & Sons, New York, 4th ed.,1999.

    2. 汪建民,陶瓷技術手冊(上)、(下),中華民國粉末冶金學會,1994。

    3. W.D.Kingery, H.K. Bowen and D.R. Uhlman, Introduction to Ceramic, 2nd Ed., John Wiley & Sons, New York,1976.

    4. K. Wefers, “Nomenclature, Preparation, and Properties of Aluminum Oxides,Oxide Hydroxides, and Trihydroxides, in Alumina Chemicals”, L. D. Hart Ed., Am. Ceram. Soc., Ohio (1990).

    5. T. G. Peason, The Chemical Background of the Aluminum Industry,
    Monograph of the Royal Institute of Chemistry, London, 1955.

    6. Laurel M,Sheppard, “Aluminum nitride. A versatile but challenging material,”Am.Ceram.Soc.Bull.,69(11),1801(1990).

    7. G. Selvaduray and L. Sheet, “Aluminum nitride:review of synthesis methods,”Mater. Sci. Technol. 9, 463(1993).

    8. F. J-H. Haussonne, “Review of the synthesis methods for AlN,” Mater. Manufacturing Process, 10(4), 717(1995).
    9. 高濂、李蔚,奈米陶瓷,五南圖書出版社,2003。
    10. W. Siegel, S. Ramasamy, H. Hahn, Z. Ti, T. Lu, and R. Gronsky,“Synthesis, Characterization, and Properties of Nanophase TiO2,” J. Mater.Res., 3, 1367, (1988).

    11. Lee, W.C; Tu, C.L; Weng, C.Y; Chung, S.L “Novel process for combustion synthesis of AlN powder”, Journal of Materials Research, 10(3),774-778(1995)

    12. Chung, S.L ; Yu, W.L ; Lin, C.N. “Self-propagating high-temperature synthesis method for synthesis of AlN powder”, Journal of Materials Research, v(5), 1928-1933(1999)
    13. Lin, C.N; Chung, S.L, “Combustion synthesis of aluminum nitride powder using additives”,Journal of Materials Research, 16(8), 2200-2208(2001)

    14. Lin, C.N; Chung, S.L ,“Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers”, Journal of Materials Research, 16(12),3518-3525(2001)

    15. Lin, C.N; Chung, S.L, “Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II)”, Journal of Materials Research,19(10),3037-3045(2004)

    16. K. Wefers and C.M. Bell, “ Oxides and Hydroxides of Aluminum”Alcoa Technical Paper No. 19, Alcoa Laboratories Pittsburgh, PA, (1972)
    17. 劉維人,林鴻明,奈米金屬材料之合成技術,工業材料,247,150-159,2007。
    18. 林鴻明,奈米陶瓷材料,陶業:中華民國陶業研究學會會刊,21(3),12-24,2002
    19. C.J. Brinker and G.W. Scherrer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing ,Academic Press, San Diego( 1990).

    20. J.J. Lannutti and D.E Clark,.” Sol-gel derived alumina substrates” Ceramics International, 11(3), 91-96(1985)

    21. Olson, William L.” Physico-chemical characterization of alumina sol prepared from aluminum alkoxides.” Materials Research Society Symposia Proceedings, 73,611-617 (1986)

    22. Macedo, Maria I. F.; Osawa, Carla C.; Bertran, Celso A. “Sol-gel synthesis of transparent alumina gel and pure gamma alumina by urea hydrolysis of aluminum nitrate”,Journal of Sol-Gel Science and Technology, v 30(3),135-140(2004)
    23. Gocmez, H.; Ozcan, O. “Low temperature synthesis of nanocrystalline α-Al2O3 by a tartaric acid gel method” Materials Science and Engineering A, 475(1-2),20-22(2008)
    24. Ponthieu, E.; Payen, E.; Grimblot, J. “Ultrafine alumina powders via a sol-emulsion-gel method”,Journal of Non-Crystalline Solids, 147-48, 598-605,(1992)

    25. Siladitya, B.; Chatterjee, M.; Ganguli, D. “Role of a surface active agent in the sol-emulsion-gel synthesis of spherical alumina powders”,Journal of Sol-Gel Science and Technology,15(3) 271-277(1999)

    26. Liu, Hongyu; Ning, Guiling; Gan, Zhihong; Lin, Yuan, “Emulsion-based synthesis of unaggregated, spherical alpha alumina”,Materials Letters, 62(10-11),1685-1688(2008)

    27. Chertov, V. M.; Tsyrina, V. V.; Lipkind, B. A.; Khlebnikova, M. A.; Volkov, Yu. Yu. “Hydrothermal synthesis of gamma -Al2O3 of various textures from the products of thermal dispersion of gibbsite.”,Journal of Applied Chemistry of the USSR (English translation of Zhurnal Prikladnoi Khimii), 59(2),384-386(1986)

    28. Dawson,William J.“Hydrothermal synthesis of advanced ceramic powders”,American Ceramic Society Bulletin, 67(10), 1673-1678 (1988)

    29. Kaiser, A.; Sporn, D.; Bertagnolli, H. “Phase transformations and control of habit in lyothermal synthesis of α-Al2O3” ,Journal of the European Ceramic Society, 14(1), 77-83,(1994)

    30. Panda, P.K.; Jaleel, V.A.; Usha Devi, S. “Hydrothermal synthesis of boehmite and α-alumina from Bayer's alumina trihydrate”, Journal of Materials Science, 41(24),8386-8389(2006)

    31. Liu, Ye; Ma, Ding; Han, Xiuwen; Bao, Xinhe; Frandsen, Wiebke; Wang, Di; Su, Dangsheng,“Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina” Materials Letters, 62(8-9),1297-1301(2008)

    32. Moyer, J. R.; Prunier, A. R.; Hughes, N. N.; Winterton, R. C. “synthesis of oxide ceramic powders by aqueous coprecipitation.”Materials Research Society Symposia Proceedings, 73, 117-122(1986)

    33. Ayral, A.; Droguet, J.C. “Alumina powders via a controlled precipitation of aluminum”,Journal of Materials Research, 4(4), 967-971(1989)

    34. Varma, H.K.; Warrier, K.G.K.; Damodaran, A.D. “Influence of the precipitation medium on the properties of fine alumina powders” Ceramics International,16(2),73-76(1990)

    35. Bhandarkar, Suhas; Bose, Arijit, “Synthesis of submicrometer crystals of aluminum oxide by aqueous intravesicular precipitation”,Journal of Colloid and Interface Science, 135(2),531-538(1990)

    36. Rajendran, S. “Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics”,Journal of Materials Science, 29(21),5664-5672(1994)

    37. Okada, Kiyoshi; Tanaka, Akihiro; Hayashi, Shigeo; Daimon, Keiji; Otsuka, Nozomu,“Porous alumina ceramics by spray-pyrolyzed powder from aluminum sulfate and aluminum nitrate solutions” Journal of Materials Research, 9(7), 1709-1713(1994)

    38. Janackovic, Dj.; Jokanovic, V.; Kostic-Gvozdenovic, Lj.; Uskokovic, D.P. “Formation mechanism, morphology and synthesis of α-Al2O3, mullite and cordierite particles obtained by the ultrasonic spray pyrolysis”, Materials Science Forum,214, 215-222(1996)

    39. Jokanovic,V. ;Janackovic,Dj.;Spasic,A.M.; Uskokovic,D.”Synthesis and formation mechanism of ultrafine spherical Al2O3 powders by ultrasonic spray pyrolysis” , Materials Transactions,37(4), 627-635(1996)

    40. Jun, Byungsei; Lee, Sangjin; Messing, G.L. “Synthesis of nano-scaled α-Al2O3 particles by combustion spray pyrolysis”,Key Engineering Materials,317-318,207-210(2006)

    41. Tok, A.I.Y.; Boey, F.Y.C.; Zhao, X.L, “Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis”, Journal of Materials Processing Technology, 178(1-3), 270-273(2006)

    42. Patil, K.C. “Advanced ceramics: Combustion synthesis and properties”, Bulletin of Materials Science,16(6),533-541(1994)

    43. Patil, K.C.; Aruna, S.T.; Ekambaram, S. “Combustion synthesis”, Current Opinion in Solid State and Materials Science , 2(2),158-165(1997)

    44. Mimani T. “Fire synthesis: preparation of alumina related products” , Resonance,5,50-57(2000)

    45. Patil, K.C.; Mimani, T.; Aruna, S.T. “Combustion synthesis: An update”, Current Opinion in Solid State and Materials Science,6(6),507-512(2002)

    46. Kingsley, J. J.; Patil, K. C. ‘novel combustion process for the synthesis of fine particle alpha-alumina and related oxide materials’, Materials Letters, 6(11-12),427-432(1988)

    47. Bhaduri, S.; Zhou, E.; Bhaduri, S.B. “Auto ignition processing of nanocrystalline α-Al2O3 ”, Nanostructured Materials, 7(5), 487-496 (1996)

    48. Kiminami, R.H.G.A.; Morelli, M.R.; Folz, D.C.; Clark, D.E. “Microwave synthesis of alumina powders”, American Ceramic Society Bulletin, 79(3), 63-67(2000)

    49. Pathak, L.C.; Singh, T.B.; Das, S.; Verma, A.K.; Ramachandrarao, P. “Effect of pH on the combustion synthesis of nano-crystalline alumina powder”,Materials Letters , 57( 2) ,380-385(2000)

    50. Ozuna, O.; Hirata, G.A.; McKittrick, J. “Pressure influenced combustion synthesis of γ- and α-Al 2O3 nanocrystalline powders”, Journal of Physics Condensed Matter, 16(15), 2585-2591(2004)

    51. Toniolo, J.C.; Lima, M.D.; Takimi, A.S.; Bergmann, C.P. “Synthesis of alumina powders by the glycine-nitrate combustion process”, Materials Research Bulletin,40(3),561-571(2005)

    52. Chen, Chien-Chong; Huang, Kuan-Tung, “Parametric effects of low-temperature combustion synthesis of alumina”,Journal of Materials Research, 20(2),424-431(2005)
    53. Peng, Tianyou; Liu, Xun; Dai, Ke; Xiao, Jiangrong; Song, Haibo “Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder”,Materials Research Bulletin, 41(9) , 1638-1645(2006)

    54. Li, R.Y.; Li, X.J.; Xie, X.H. “Explosive synthesis of ultrafine Al2O3 and effect of temperature of explosion Combustion, Explosion and Shock Waves, 42(5), 607-610(2006)

    55. Li, Jiang; Pan, Yubai; Xiang, Changshu; Ge, Qiming; Guo, Jingkun “Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process”, Ceramics International ,32(5), 587-591(2006)

    56. Edrissi, M.; Norouzbeigi, R. “Synthesis and characterization of alumina nanopowders by combustion of nitrate-amino acid gels” Materials Science- Poland, 25(4),1029-1040(2007)

    57. Li, Jiang ; Wu, Yusong; Pan, Yubai; Guo, Jingkun. “Alumina precursors produced by gel combustion”, Ceramics International, 33( 3),361-363(2007)

    58. Morita, Mizuho; Uesugi, Nirohiko; Isogai, Seiji; Tsubouchi, Kazuo; Mikoshiba, Nobuo, “Epitaxial growth of aluminum nitride on sapphire using metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics,20(1), 17-23(1981)

    59. Itoh, Hideaki; Morikawa, Hisashi; Sugiyama, Kohzoh, “Growth of aluminium nitride pillar crystals by chemical vapour deposition”, Journal of Crystal Growth, 94(2),387-391(1989)

    60. Wu, Nan-Chung; Tsai, Ming-Sung; Wang, Moo-Chin; Liu, Hok-Shing, “Morphology and formation mechanism of aluminum nitride nanocrystals synthesized by chemical vapor deposition”, Journal of Crystal Growth, 208(1-4),189-196(2000)

    61. Wang, M.-C.; Tsai, M.-S.; Wu, N.-C. “Effect of process parameters on synthesis of aluminum nitride powder prepared by chemical vapor deposition”, Journal of Materials Science, 36(13),3283-3289(2001)
    62. Komeya, Katsutoshi; Matsukaze, Noriyuki; Meguro, Takeshi, “Synthesis of AlN by direct nitridation of Al alloys”,Journal of the Ceramic Society of Japan, International Edition, v (12),1286-1290(1993)

    63. Kagawa, Y.; Khatri, S.C.; Koczak, M.J.,“Directed nitridation of liquid aluminum alloy: growth process and modeling”,Ceramic Engineering and Science Proceedings,14(9-10),776-781(1993)

    64. Ghajanian, M.K.; Biel, J.P.; Smith, R.G.; Kennedy, C.R. ,“Microstructure and properties of AlN matrix composites produced by the directed nitridation of molten aluminum”, Journal of Materials Science Letters,13(4),293-296(1994)

    65. Interrante, Leonard V.; Carpenter, Leslie E. II.; Whitmarsh, Christopher; Lee, Wei; Garbauskas, Mary; Slack, Glen A. “Studies of organometallic precursors to aluminum nitride”,Materials Research Society Symposia Proceedings,73,359-366(1986)

    66. Hyodo, T.; Kano, M.; Shimizu, Y.; Egashira, M. “Preparation of aluminum nitride powder from aluminum chloride/ethylenediamine precursor”, Journal of the Ceramic Society of Japan, 109(1272), 709-711(2001)

    67. Hao, Xiao-Peng; Yu, Mei-Yan; Cui, De-Liang; Xu, Xian-Gang; Bai, Yu-Jun; Wang, Qi-Long; Jiang, Min-Hua, “Synthesize AlN nanocrystals in organic solvent at atmospheric pressure”, Journal of Crystal Growth, 242(1-2),229-232(2002)

    68. Kimura, Isao; Hotta, Noriyasu; Nukui, Hideki; Saito, Natsukaze; Yasukawa, Saburo, “Particulate characteristics and deposition features of fine AIN powder synthesized by vapour-phase reaction “,Journal of Materials Science, 24(11),4076-4079(1989)

    69. Di Lello, B.C.; Moura, F.J.; Solorzano, I.G. “Synthesis and characterization of nano-scale aluminum nitride produced from vapor phase”,Materials Science and Engineering C, 15(1-2),p 67-69(2001)

    70. Da Cruz, A.C.; Munz, R.J. “Nucleation with simultaneous chemical reaction in the vapor-phase synthesis of AIN ultrafine powders” Aerosol Science and Technology, 34(6),499-511(2001)

    71. Hotta, Noriyasu; Kimura, Isao; Ichiya, Kenji; Saito, Natsukaze; Yasukawa, Saburo; Tada, Kiyoshi; Kitamura, Teruo, “Continuous synthesis and properties of fine AIN powder by floating nitridation technique”,Journal of the Ceramic Society of Japan,96(7), 731-735(1988)

    72. Kimura, Isao ; Ichiya, Kenji; Ishii, Masahiro; Hotta, Noriyasu; Kitamura, Teruo, “Synthesis of fine AIN powder by a floating nitridation technique using an N2/NH3 gas mixture”, Journal of Materials Science Letters, 8(3),303-304(1989)

    73. Hotta, Noriyasu; Kanatani, Mitsugu; Yonezawa, Reki; Yanagrta, Kunihiro; Tobrtsuka, Toshihide; Watanabe, Takeshi, “Properties of AlN powders synthesized by rapid nitridation of Al powder in floating system” Materials Science Forum, 426-432(5), 4245-4250(2003)

    74. Serpek , O ., UK Patent, 13579,(1906)

    75. Sakai, Toshikazu;Tanaka, Takaho; Iwata, Minoru., “effect of oxygen impurity on high temperature thermal conductivity of AIN” ,Journal of the Ceramic Society of Japan, 81(9),399-400(1973)

    76. Hirai, Shinji; Miwa, Tetsuya; Iwata, Tsutomu; Ozawa, Masayoshi; Katayama, Hiroshi G. “Formation of A1N by carbothermic reduction of Al2O3 in a flowing N2 atmosphere”, Journal of the Japan Institute of Metals, 53(10),1035-1040(1989)

    77. Hirai, Shinji; Miwa, Tetsuya; Iwata, Tsutomu; Katayama, Hiroshi G. ,“Some examinations on the formation of AlN by simultaneous reduction-nitriding of Al2O3”,Journal of the Japan Institute of Metals, 54(2),181-185(1990)

    78. Tsuge, A.; Inoue, H.; Kasori, M.; Shinozaki, K. “Raw material effect on AIN powder synthesis from Al2O3 carbothermal reduction”, Journal of Materials Science,25(5),2359-2361(1990)

    79. Lefort, Pierre; Billy, Michel,. “Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere” Journal of the American Ceramic Society, 76(9),2295-2299(1993)

    80. Forslund, B.; Zheng, J. ,“Carbothermal synthesis of aluminium nitride at elevated nitrogen pressures. Part I: Effect of process parameters on conversion rate”, Journal of Materials Science, 28(12), 3125-3131(1993)

    81. Forslund, B.; Zheng, J., “Carbothermal synthesis of aluminium nitride at elevated nitrogen pressures. Part II Effect of process parameters on particle size and morphology”, Journal of Materials Science, 28(12),3132-3136(1993)

    82. Komeya, Katsutoshi; Mitsuhashi, Etsuo; Meguro, Takeshi., “Synthesis of AIN powder by carbothermal reduction-nitridation method - effect of additives on reaction rate”, Journal of the Ceramic Society of Japan,101(1172),377-382(1993)

    83. Hashimoto, Noboru; Deki, Shigehito; Yato, Hisanari; Kanaji, Yukio ., “Effect of polynuclear complex content on the synthesis of aluminum nitride from aluminum polynuclear complex”, Journal of the American Ceramic Society,77(6),1633-37(1994)

    84. Komeya, Katsutoshi; Kitagawa, Isayoshi; Meguro, Takeshi., “Effect of Ca-compound addition on synthesis of AlN powder by carbothermal reduction-nitridation method”, Journal of the Ceramic Society of Japan, International Edition, 102(7), 669-673(1994)

    85. Chen, Hsi-Hue; Lin, Chun-I., “Reduction of carbon/alumina powder mixture in a flowing nitrogen stream: the effects of catalysts on the reaction kinetics”,Journal of Materials Science Letters, 13(10), 713-715(1994)

    86. Baik, Youngmin; Shanker, Kartik; McDermid, Joseph R.; Drew, Robin A.L., “Carbothermal synthesis of aluminum nitride using sucrose”, Journal of the American Ceramic Society, 77(8), 2165-2172(1994)
    87. Tseng, Wen-Hong ; Lin, Chun-I ., “Carbothermal reduction and nitridation of aluminium hydroxide”, Journal of Materials Science, 31(13),3559-3565(1996)
    88. Jung, W.-S. ; Ahn, S.-K., “Monitoring the conversion of α-alumina to AlN under a flow of nitrogen by Al-27 MAS NMR spectroscopy”, Journal of Materials Science Letters, 16(19),1573-1575(1997)

    89. Zhou, He-Ping; Chen, Hao; Wu, Yin; Miao, Wei-Guo; Liu, Xi ., “Structure characteristics of AlN whiskers fabricated by the carbo-thermal reduction method”, Journal of Materials Science, 33(16),4249-4253(1998)

    90. Chen, Hsi-Kuei; Lin, Chun-I., “Mathematical model for carbothermic nitridation of carbon/aluminum oxide pellet-Knudsen diffusion region”, Journal of the Chinese Institute of Chemical Engineers, 30(2),161-166(1999)

    91. Ide, Takayuki; Komeya, Katsutoshi; Suehiro, Takayuki; Tatami, Junichi; Meguro, Takeshi; Naito, Makio; Hotta, Tadashi; Kuibira, Akira., “Effect of CaCO3-Y2O3 addition on synthesis of AlN powder by carbothermal reduction-nitridation of Al2O3”,Journal of the Ceramic Society of Japan, 109(1276),1051-1054(2001)

    92. Ide, T.; Komeya, K.; Tatami, J.; Meguro, T.; Naito, M.; Hotta, T., “Effect of Y2O3 addition on synthesis of AlN powder by carbothermal reduction-nitridation of Al2O3”,Journal of the Ceramic Society of Japan, 109(1268),372-375(2001)

    93. Nakao, Wataru; Fukuyama, Hiroyuki; Nagata, Kazuhiro., “Gibbs energy change of carbothermal nitridation reaction of Al2O3 to form AlN and reassessment of thermochemical properties of AlN”, Journal of the American Ceramic Society, 85(4),889-896(2002)

    94. Jung, Woo-Sik; Lee, Tae Jin; Min, Bong-Ki., Growth mechanism of aluminum nitride whiskers prepared from a (glutarato) (hydroxo) aluminum(III) complex” Materials Letters, 57(26-27), 4237-4242 (2003)

    95. Ercayhan, S.; Derin, B.; Sahin, F.C.; Yucel, O., “Production of aluminum nitride powders from seydisehir aluminum hydroxide”, Key Engineering Materials, 264-268(I), Euro Ceramics VIII, 105-108(2004)

    96. Akturk, M.; Emrullahoglu, C.B.; Emrullahoglu, O.F. “Effect of CaF2 addition and type of alumina on production of aluminum nitride” Key Engineering Materials, 264-268(II), Euro Ceramics VIII, 965-968(2004)

    97. Kuang, Jiacai; Zhang, Changrui; Zhou, Xingui; Liu, Qicheng; Ye, Chang., “Formation and characterization of cubic AlN crystalline in a carbothermal reduction reaction”, Materials Letters, 59(16), 2006-2010(2005)
    98. Jung, Woo-Sik; Joo, Hyeong Uk., “Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method”, Journal of Crystal Growth, 285(4),566-571 (2005)

    99. Shen, Chunying; Qiu, Tai; Lu, Yuming., “Morphology and reaction mechanism of AlN fibers synthesized by carbothermal reduction”, Key Engineering Materials, 280-283(II),1399-1402(2005)

    100. Fu, Renli; Zhou, Heping; Chen, Kexin; Ferreira, Jose M. F. , “Thermodynamics and kinetic considerations behind the growth of AlN whiskers synthesized by carbothermal reduction”,Key Engineering Materials, 280-283(II),1403-1408(2005)

    101. Pathak, L.C.; Ray, A.K.; Das.S., “Carbothermal synthesis of nanocrystalline aluminum nitride powders”, Jounal Of American Ceramic Society,82(1),257-260(1999)

    102. Qin, Mingli; Qu, Xuanhui; Lin, Jianling; Xiao, Ping-An; Zhu, Baojun., “Synthesis of ultrafine aluminum nitride powder by a low-temperature carbothermal reduction process”, Key Engineering Materials, 224-226,531-534(2002)

    103. Qin, Mingli; Qu, Xuanhui; Xiao, Ping'an; Lin, Jianliang; Tang, Chunfeng; Zhu, Baojun., “Effect of urea on the morphology of precursor and aluminum nitride powders” ,Journal of the Chinese Ceramic Society, 31(4),351-355(2003)

    104. Kuang, JiaCai; Zhang, ChangRui; Zhou, XinGui; Wang, SiQing., “Synthesis of high thermal conductivity nano-scale aluminum nitride by a new carbothermal reduction method from combustion precursor”, Journal of Crystal Growth, 256(3-4),288-291(2003)
    105. Kuang, JiaCai; Zhang, ChangRui; Zhou, XinGui; Wang, SiQing., “Influence of processing parameters on synthesis of nano-sized AlN powders”, Journal of Crystal Growth, 263(1-4),12-20(2004)

    106. Kuang, Jia Cai; Zhang, Chang Rui; Zhou, Xin Gui; Wang, Si Qing ., “Synthesis and characterization of nanocrystalline aluminum nitride from a low temperature combustion precursor”, Journal of Materials Science, 39(9), 3167-3169(2004)

    107.R.H Perry, C.H Chilton, Chemical Engineers Handbook ,5th ed . McGraw-Hill , New York , 197.

    下載圖示 校內:2010-07-01公開
    校外:2010-07-01公開
    QR CODE