簡易檢索 / 詳目顯示

研究生: 何怡瑩
Ho, I-Ying
論文名稱: 以樣本平均近似法求解考慮服務水準下之兩階層存貨系統
Using Sample Average Approximation to Solve a Two-Echelon Inventory System Problem Subject to Service Level Constraints
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 兩階層存貨系統樣本平均近似法切面法可行性檢查程序
外文關鍵詞: two-echelon inventory system, sample average approximation, cutting plane method, feasibility check procedure
相關次數: 點閱:166下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對兩階層存貨系統問題發展演算法,此存貨系統包含一個外部供應商、一個中心倉庫與多個零售商,當需求發生時,零售商扮演服務顧客的角色,提供商品給顧客,並根據存貨策略向中心倉庫及時下訂單進行補貨。中心倉庫具有供應產品功能,負責滿足各個零售商的需求。當中心倉庫開始缺貨後(亦即存貨量降為零),此時由外部供應商提供存貨來滿足各分倉的補貨訂單需求,由外部供應商提供存貨時顧客等候時間會較由中心倉庫提供存貨時較長。在此存貨系統中,顧客需求的間隔時間、顧客需求的數量和補貨前置期長度皆為隨機性的變數,因此為高度複雜性的問題。
    本研究之兩階層存貨系統採用連續補貨策略(S-1,S),將顧客等候時間當作服務績效,而顧客等候時間為顧客向各零售商提出需求時至顧客需求被滿足的間隔時間,期望在最小化總成本且顧客等候時間低於門檻值下,求得最佳的存貨初始存貨水準。此系統具有一個隨機目標式和多條隨機限制式且擁有龐大的解空間,無法透過傳統數學模式進行有效率的求解。此外,為了更符合真實情境的隨機性,本研究將發展一個模擬最佳化演算法,結合樣本平均近似法(Sample Average Approximation)、切面法(Cutting Plane Method)和可行性檢查程序(Feasible Check Procedure)求解問題。

    We address a two-echelon inventory system consisting of an external supplier, a central warehouse and some retailers. The objective is to determine an (S-1, S) pair that minimizes a cost function, defined in terms of both holding costs and shortage costs, subject to the constraint that the average response time to each customer is below a specified threshold level. The problem we formulate has a large solution space; however, traditional mathematical model can not solve these problems efficiently, so we propose an algorithm based on simulation. The Ranking and Selection (R&S) procedure can be used to solve simulation optimization problems for which the number of feasible solutions is small, and thus we propose a simulation algorithm which combines the sample average approximation, the cutting plane method and the feasibility check procedure.

    目錄 摘要 Ⅰ 英文延伸摘要 Ⅱ 致謝 Ⅵ 目錄 Ⅶ 圖目錄 Ⅸ 表目錄 Ⅹ 第一章緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3論文架構 3 第二章文獻回顧 4 2.1具有隨機成本目標之存貨系統 4 2.2樣本平均近似法 13 2.3可行性檢查程序(Feasible Check Procedure; FCP) 18 2.3.1考慮單一隨機限制式和單一系統的可行性判定程序(Feasibility Check Procedure) 21 2.3.2多重可行性判定程序(Multiple Feasibility Check Procedure) 23 2.4樣本平均估計的樣本數決定方式 24 第三章研究方法 29 3.1兩階層存貨系統問題 29 3.1.1假設規劃期內可補貨,前置期具隨機性 34 3.1.2假設規劃期內皆不補貨 41 3.1.3假設規劃期內可補貨,且需求到達的間隔時間大於固定長度的前置期 42 3.2有服務水準限制的兩階層存貨系統之樣本平均估計模型 45 3.3利用切面法處理具有凸性性質的期望等候時間限制式 46 3.4模擬最佳化求解演算法 48 第四章實驗情境與分析 56 4.1實驗評估 57 4.2實驗結果 60 第五章結論與未來研究方向66 5.1結論 66 5.2未來研究方向 67 參考文獻 68

    參考文獻
    1. Andradottir, S., Simulation optimization Chapter 9. In: Banks, J.(Ed.), Handbook of Simulation. John Wiley & Sons, New York 307-333.
    2. Andradpttir, S., Kim, S.H., 2010. Fully sequential procedure for comparing constrained systems via simulation. Naval Research Logistics 57, 403-421.
    3. Al-Khamis, T., M’Hallah, R., 2010. A two-stage stochastic programming model for the parallel machine scheduling problem with machine capacity. Computers and Operations Research 38, 1747-1759.
    4. Atlason, J., Henderson, S.G., 2004. Call center staffing with simulation and cutting plane methods. Annals of Operations Research 127, 333-358.
    5. Bayraksan, G., Morton, D.P., 2009. Assessing solution quality in stochastic programs via sampling. Operations Research 5, 102-122.
    6. Batur, D., Kim, S.H., 2010. Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation 20, 1-26.
    7. Ben-Daya, M., Hariga, M., 2004. Integrated single vendor single buyer model with stochastic demand and variable lead time. International Journal of Production Economics 92, 75-80.
    8. Burcu, B., Melouk, S.H., Meyer, I.L., 2010. A simulation-optimization approach for integrated sourcing and inventory decisions. Computers and Industrial Engineering 37, 1648-1661.
    9. Caglar, D., Li, C., Simchi-Levi, D., 2004. Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions 36, 655-666.
    10. Calafiore, G.C., Campi, M.C., 2006. The scenario approach to robust control design. IEEE Transactions on Automatic Control 51, 742-753.
    11. Cezik, M.T., L’Ecuyer, P., 2008. Staffing multiskill call centers via linear programming and simulation. Management Science 54, 310-323.
    12. Ghalebsaz-Jeddia, B., Shultes, B.C., Haji, R., 2004. A multi-product continuous review inventory system with stochastic demand, backorders, and a budget constraint. European Journal of Operational Research 158, 456-469.
    13. Hadley, G., Whitin, T.M., 1963. Analysis of inventory systems Prentice-Hall, Englewood Cliffs, NJ.
    14. Hariga, M. A., 2010. A single-item continuous review inventory problem with space restriction. International Journal of Production Economics 128, 153-158.
    15. Hayya, J.C., Bagchi, U., Ramasesh, R., 2011. Cost relationship in stochastic inventory: A simulation study of the (S,S-1,t=1) model. International Journal of Production Economics 130, 196-202.
    16. Herer, Y.T., Tzur, M., Yucesan, E., 2006. The multilocation transshipment problem. IIE Transactions 38, 185-200.
    17. Homem-de-Mello, T., Bayraksan, G., 2014. Monte Carlo sampling-based methods for stochastic optimization, manuscript, under review for Surveys in Operations Research and Management Science.
    18. Homem-de-Mello, T., Bayraksan, G., 2014. Stochastic Constraints and Variance Reduction Techniques. International Series in Operations Research and Management Science Volume 216, 245-276.
    19. Kim, S.H., Nelson, B.L., 2006. Selecting the best system. In: Henderson, S.G., Nelson, B.L.(Eds.), Simulation. Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, pp. 501-534.
    20. Kim, S., Pasupathy, R., Henderson, S.G. Henderson., 2013. A guide to sample-average approximation, in: Michael C. Fu (Ed.), Handbook of Simulation Optimization, in press.
    21. Kleywegt, A.J., Shipro, A., Homem-de-Mello, T., 2001. The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12, 479-502.
    22. Lee, C. Cetinkaya, S., Jaruphongsa, W., 2003. A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse. Operations Research, 51, 735-747.
    23. Li, Y., Xu, X., Ye, F., 2011. Supply chain coordination model with controllable lead time and service constraint. Computers and Industrial Engineering 61, 858-864.
    24. Luedtke, J., Ahmed, S., 2008. A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization 19, 674-699.
    25. Nahmias, S., 1982. Perishable inventory theory: A review. Operations Research 3, 680-708.
    26. Ouyang, L., Wu, K., Ho, C., 2004. Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time. International Journal of Production Economics 92, 255-266.
    27. Ozdemir, D., Yucesan, E., Herer, Y.T., 2013. Multi-location transshipment problem with capacitated production. European Journal of Operational Research 226, 425-435.
    28. Pasupathy, R., 2010. On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization. Operations Research 58, 889-901.
    29. Pichitlamken, J., Nelson, B.L., Hong, L. J., 2006. A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research 173, 283-298.
    30. Polak, E., Royset, J.O., 2008. Efficient sample sizes in stochastic nonlinear programming. Journal of Computational and Applied Mathematics 217, 301-310.
    31. Royset, J.O., 2013. On samplesize control in sample average approximations for solving smooth stochastic programs. Computational Optimization and Applications 55, 265-309.
    32. Royset, J.O., Szechtman, R., 2013. Optimal budget allocation for sample average approximation. Operations Research 61, 762-776.
    33. Shapiro, A., 1991. Asymptotic analysis of stochastic programs. Annals of Operations Research 30, 169-186.
    34. Shapiro, A., Philpott, A., 2007. A tutorial on stochastic programming. Manuscript. Available at http://www2.isye.gatech.edu/~ashapiro/publications.html
    35. Shapiro, A., Homem-de-Mello, T., Kim, T., 2002. Conditioning of convex piecewise linear stochastic programs. Mathematical Programming 94, 1-19.
    36. Scarf, H. E., 1963. A survey of analytic techniques in inventory theory. In: H.E. Scarf, D.M. Gilford, and M.W. Shelly (Eds.) Multistage Inventory Models and Techniques, Stanford University Press, Stanford, California. 185-225.
    37. Sherbrooke, C.C., 1968. METRIC: a multi-echelon technique for recoverable item control. Operations Research 16, 122-141.
    38. Wang, W., Ahmed, S., 2008. Sample average approximation of expected value constrained stochastic programs. Operations Research Letters 36, 515-519.
    39. Whitin, T. M., 1957. The Theory of Inventory Management. Princeton University Press, NJ.
    40. Xu, H., Zhang, D., 2009. Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Mathematical Programming 119, 371-401.

    無法下載圖示 校內:2020-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE