| 研究生: |
李明駿 Lee, Ming-Chun |
|---|---|
| 論文名稱: |
檢測及最佳化石墨烯薄膜表面形貌 Characterizing and Optimizing the Morphology of Graphene Films |
| 指導教授: |
謝馬利歐
Mario Hofmann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 石墨烯微片 、應變 、阻抗 |
| 外文關鍵詞: | graphene flakes, strain, impedance |
| 相關次數: | 點閱:107 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,我們利用新的檢測方法最佳化石墨烯薄膜。傳統量測技術如電阻量測及顯微鏡觀測僅能顯示出粗略或局部的特性,如均勻性或特定區域的表面形貌。然而藉由應變量測,我們可以得知石墨烯微片之間重疊的平均變化,而阻抗量測可以提供更多有關微片彼此重疊多寡的資訊。藉由沉積方法、溶劑與材料的調整,以及新的檢測方法之應用,使我們得以提升石墨烯薄膜的品質。
這些實驗結果提供了未來應用上的更多可能性,包含石墨烯微片重疊之無線讀取以及遙測應變計之應用。
We have applied novel characterization methods to the optimization of graphene thin films. Traditional measurement techniques such as resistance measurements and microscopy can only reveal global or local properties, such as uniformity or selected morphologies. Strain measurements, on the other hand can yield information on the average change in overlap between flakes. Impedance measurements can complement this information by providing information on the magnitude of the overlap. Our method was applied to improving the quality of graphene films by varying deposition, solvent, and material.
These results open up a route to wirelessly reading out graphene overlap for application in remote strain sensors.
[1] A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, et al., "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems," Nanoscale, vol. 7, pp. 4598-4810, 2015 2015.
[2] Ultrasonic Atomization Technology. Available: http://www.sono-tek.com/ultrasonic-nozzle-technology/
[3] Agilent Impedance Measurement Handbook, Fourth ed.: Agilent Technologies, 2013.
[4] S.-H. Yang, Wireless Sensor Network - Principle, Design and Applications, 2014.
[5] Tektronix, "Capacitance and Inductance Measurements Using an Oscilloscope and a Function Generator," 2012.
[6] AccuMist Ultrasonic Nozzle. Available: http://www.sono-tek.com/accumist/
[7] 超音波噴霧技術概論. Available: http://www.sup-tek.com.tw/tekoverview.html
[8] X. Wan, Y. Huang, and Y. Chen, "Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale," Accounts of Chemical Research, vol. 45, pp. 598-607, Apr 2012.
[9] J. Herrmann, K. H. Mueller, T. Reda, G. R. Baxter, B. Raguse, G. J. J. B. de Groot, et al., "Nanoparticle films as sensitive strain gauges," Applied Physics Letters, vol. 91, Oct 29 2007.
[10] M. Hempel, D. Nezich, J. Kong, and M. Hofmann, "A novel class of strain gauges based on layered percolative films of 2D materials," Nano Lett, vol. 12, pp. 5714-8, Nov 14 2012.
[11] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, Jun 6 2008.
[12] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 18 2008.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
[14] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, et al., "Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature," Nano Letters, vol. 11, pp. 2396-2399, Jun 2011.
[15] J. Zhao, G.-Y. Zhang, and D.-X. Shi, "Review of graphene-based strain sensors," Chinese Physics B, vol. 22, May 2013.
[16] F. S. R. Service, Test and Measurement, 2007.
[17] C. Cochrane, V. Koncar, M. Lewandowski, and C. Dufour, "Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite," Sensors, vol. 7, pp. 473-492, Apr 2007.
[18] F. Xu and Y. Zhu, "Highly Conductive and Stretchable Silver Nanowire Conductors," Advanced Materials, vol. 24, pp. 5117-5122, Sep 25 2012.
[19] A. A. Barlian, W.-T. Park, J. R. Mallon, Jr., A. J. Rastegar, and B. L. Pruitt, "Review: Semiconductor Piezoresistance for Microsystems," Proceedings of the Ieee, vol. 97, pp. 513-552, Mar 2009.
[20] efunda - Sensitivity of Strain Gage Wire Materials. Available: http://www.efunda.com/designstandards/sensors/strain_gages/strain_gage_sensitivity.cfm
[21] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, et al., "Wafer-Scale Synthesis and Transfer of Graphene Films," Nano Letters, vol. 10, pp. 490-493, Feb 2010.
[22] H. H. Madden, J. Kuppers, and G. Ertl, "Interaction of carbon-monoxide with (110) nickel surfaces," Journal of Chemical Physics, vol. 58, pp. 3401-3410, 1973 1973.
[23] D. E. Starr, E. M. Pazhetnov, A. I. Stadnichenko, A. I. Boronin, and S. K. Shaikhutdinov, "Carbon films grown on Pt(111) as supports for model gold catalysts," Surface Science, vol. 600, pp. 2688-2695, Jul 1 2006.
[24] J. Vaari, J. Lahtinen, and P. Hautojarvi, "The adsorption and decomposition of acetylene on clean and K-covered Co(0001)," Catalysis Letters, vol. 44, pp. 43-49, 1997 1997.
[25] S. Marchini, S. Guenther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B, vol. 76, Aug 2007.
[26] Y. Zhang, L. Zhang, and C. Zhou, "Review of Chemical Vapor Deposition of Graphene and Related Applications," Accounts of Chemical Research, vol. 46, pp. 2329-2339, Oct 15 2013.
[27] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature Nanotechnology, vol. 5, pp. 574-578, Aug 2010.
[28] B. C. Brodie, "Sur le poids atomique du graphite," Ann. Chim. Phys, vol. 59, pp. 466-472, 1860.
[29] L. Staudenmaier, "Verfahren zur Darstellung der Graphitsaure," Ber. Deut. Chem. Ges., vol. 31, pp. 1481-1499, 1898.
[30] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958 1958.
[31] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nature Nanotechnology, vol. 3, pp. 538-542, Sep 2008.
[32] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, pp. 563-568, Sep 2008.
[33] A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, "Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes," Small, vol. 5, pp. 1841-1845, Aug 17 2009.
[34] C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, and A. R. Barron, "High-Yield Organic Dispersions of Unfunctionalized Graphene," Nano Letters, vol. 9, pp. 3460-3462, Oct 2009.
[35] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, et al., "Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions," Journal of the American Chemical Society, vol. 131, pp. 3611-3620, Mar 18 2009.
[36] M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, "High-Concentration, Surfactant-Stabilized Graphene Dispersions," Acs Nano, vol. 4, pp. 3155-3162, Jun 2010.
[37] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, "One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite," Advanced Functional Materials, vol. 18, pp. 1518-1525, May 23 2008.
[38] K. Parvez, R. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, et al., "Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics," Acs Nano, vol. 7, pp. 3598-3606, Apr 2013.
[39] P. Tripathi, C. R. P. Patel, M. A. Shaz, and O. N. Srivastava, "Synthesis of High-Quality Graphene through Electrochemical Exfoliation of Graphite in Alkaline Electrolyte," 2013.
[40] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports-Review Section of Physics Letters, vol. 473, pp. 51-87, Apr 2009.
[41] N. V. Prasad, K. Srinivas, G. S. Kumar, and A. R. James, "Impedance measurements on TiO2-Fe2O3 thin films," Applied Physics a-Materials Science & Processing, vol. 72, pp. 341-345, Mar 2001.
[42] E. Mateev, B. Blagoev, and T. Nurgaliev, "Impedance measurements of epitaxial and polycrystalline LSMO thin films," Journal of Physics: Conference Series, vol. 356, pp. 012022 (3 pp.)-012022 (3 pp.), 2012 2012.
[43] H. Ma, J. Li, X. Cheng, and A. Nathan, "Heterogeneously integrated impedance measuring system with disposable thin-film electrodes," Sensors and Actuators B-Chemical, vol. 211, pp. 77-82, May 2015.
[44] L. J. v. d. Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Research Reports, vol. 13, pp. 1-9, 1958.
[45] Allightec CO. Available: http://www.allightec.com/about.php
[46] Graphage (Enerage, Inc). Available: http://www.graphene.com.tw/index.php
[47] Wikipedia - Series and parallel circuits. Available: https://en.wikipedia.org/wiki/Series_and_parallel_circuits
[48] J. T. S. Irvine, D. C. Sinclair, and A. R. West, "Electroceramics: characterization by impedance spectroscopy," Advanced Materials, vol. 2, pp. 132-8, March 1990.
[49] M. Gerstl, E. Navickas, G. Friedbacher, F. Kubel, M. Ahrens, and J. Fleig, "The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers," Solid State Ionics, vol. 185, pp. 32-41, Mar 11 2011.
[50] K. J. Loh and J. P. Lynch, "Design and validation of carbon nanotube thin film wireless sensors for pH and corrosion monitoring," in ASME Conference on Smart Materials, Adaptive Strutures and Intelligent Systems, 2008, pp. 219-227.
[51] J. C. Butler, A. J. Vigliotti, F. W. Verdi, and S. M. Walsh, "Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor," Sensors and Actuators a-Physical, vol. 102, pp. 61-66, Dec 1 2002.
[52] Y. Huang, W. Dong, T. Huang, Y. Wang, L. Xiao, Y. Su, et al., "Self-similar design for stretchable wireless LC strain sensors," Sensors and Actuators a-Physical, vol. 224, pp. 36-42, Apr 1 2015.
[53] L. M. Reindl and I. M. Shrena, "Wireless Measurement of Temperature Using Surface Acoustic Waves Sensors," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 1457-1463, Nov 2004.
[54] V. Pepakayala, S. R. Green, and Y. B. Gianchandani, "Passive Wireless Strain Sensors Using Microfabricated Magnetoelastic Beam Elements," Journal of Microelectromechanical Systems, vol. 23, pp. 1374-1382, Dec 2014.
[55] J. D. Zook, D. W. Burns, J. N. Schoess, and H. Guckel, "Optically resonant microbeams," in Proceedings of the SPIE - The International Society for Optical Engineering, 1995, pp. 6-16.
[56] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, Second ed.: John Wiley & Sons, Inc., 2003.
[57] E. Dascotte, J. Strobbe, and U. T. Tygesen, "Continuous stress monitoring of large structures," presented at the 5th International Operational Modal Analysis Conference 2013.
[58] 內政部統計處 - 103年建築物買賣登記概況. Available: http://www.moi.gov.tw/stat/news_content.aspx?sn=9192