簡易檢索 / 詳目顯示

研究生: 吳榮昭
Wu, Rong-Jhao
論文名稱: 橢圓界面問題之高階不連續有限元素法
A High-Order Discontinuous Galerkin Method for Elliptic Interface Problems
指導教授: 陳旻宏
Chen, Min-Hung
王辰樹
Wang, Chern-Shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 40
中文關鍵詞: 高階數值方法不連續有限元素法橢圓界面問題
外文關鍵詞: Discontinuous Galerkin method, Elliptic interface problem, High-order method
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中, 我們以高階不連續有限元素法解橢圓界面問題。在數值方法中, 使用Guyomarc’h, Lee 與Jeon 所提出的數值通量, 與其不同是, 我們使用曲邊四邊形元素取代三角形元素, 而在函數基底方面, 使用Q^k-polynomials 取代P^k-polynomials。
    在數值實驗中, 當基底函數之維度設定為k 階, 則得以驗證數值解之誤差收斂速度為k + 1 階, 而在實際應用上, 可任意設定基底函數之維度, 以得到所需要之誤差收斂速度。

    In this paper, we deal with a high-order accurate discontinuous Galerkin method for the numerical solution of the elliptic interface problem with discontinuous media property and jumps on interface. In this work, we use the local discontinuous Galerkin (LDG) methods with the numerical flux proposed by Guyomarc’h, Lee, and Jeon, and instead of the triangular elements and the P^k-polynomials basis functions, we use the quadrilateral elements and the Q^k-polynomials basis functions.
    The numerical experiments show that the numerical solution converges with order k+1 when all the local spaces contain the polynomials of degree k.

    Contents 1 Introduction 1 2 The Elliptic Interface Problem 3 2.1 The model problem 3 2.2 Well-posedness of weak formulation 4 3 The LDG Method 8 3.1 Discontinuous Galerkin weak formulation 8 3.2 Mixed form of LDG methods 9 3.3 Well-posedness of LDG methods 13 3.4 Matrix Reduction 13 3.5 The bilinearly blended transfinite map 15 4 Numerical Results 17 5 Conclusions 38

    References
    [1] Brenner, S. C.; Scott, L. R.: The Mathematical Theory of Finite Element Methods. 2nd ed. Springer, New York-Berlin-Heidelberg, 2002.
    [2] Cockburn, B.: Discontinuous Galerkin methods. ZAMM Z. Angew. Math. Mech. vol. 83, no. 11, pp. 731-754 (2003).
    [3] Castillo, P.; Cockburn, B.; Perugia, I.; Sch¨otzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. vol. 38, no. 5, pp. 1676-1706 (2000).
    [4] Cockburn, B.; Hou, S.; Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp. vol. 54, no. 190, pp. 545-581 (1990).
    [5] Cockburn, B.; Lin, S. Y.; Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. vol. 84, no. 1, pp. 90-113 (1989).
    [6] Cockburn, B.; Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comp. vol. 52, no. 186, pp. 411-435 (1989).
    [7] Cockburn, B.; Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. RAIRO Model. Math. Anal. Numer. vol. 25, no. 3, pp. 337-361 (1991).
    [8] Cockburn, B.; Shu, C.-W.: The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. vol. 141, no. 2, pp. 199-224 (1998).
    [9] Cockburn, B.; Shu, C.-W.: The local discontinuous Galerkin method for timedependent convection-diffusion systems. SIAM J. Numer. Anal. vol. 35, no. 6, pp. 2440-2463 (1998).
    [10] Cockburn, B.; Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. vol. 16, no. 3, pp. 173-261 (2001).
    [11] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.
    [12] Gordon, W. J.; Hall, C. A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. vol. 21, no. 2, pp. 109-129 (1972).
    [13] Guyomarc’h, G.; Lee, C.O.; Jeon, K.: A discontinuous Galerkin method for elliptic interface problems with application to electroporation, Commun. Numer. Methods Engrg. (2008).
    [14] Hou, S.; Liu, X.-D.: A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. vol. 202, no. 2, pp. 411-445 (2005).
    [15] Liu, X.-D.; Fedkiw, R.P.; Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys. vol. 160, no. 1, pp. 151-178 (2000).
    [16] Leveque, R.J.; Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. vol. 31, no. 4, pp. 1019-1044 (1994).
    [17] Liu, X.-D.; Sideris, T.C.: Convergence of the ghost fluid method for elliptic equations with interface, Math. Comp. vol. 72, no. 244, pp. 1731-1746 (2003).
    [18] Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, PA, 2008.

    下載圖示 校內:立即公開
    校外:2009-08-10公開
    QR CODE