簡易檢索 / 詳目顯示

研究生: 林恒正
Lin, Heng-cheng
論文名稱: 以二階子模型結合實驗設計法進行多晶片模組可靠度之最佳化分析
Application of 2nd order Sub-modeling & Experiment Design for Multi-Chip Module (MCM) Reliability Optimization
指導教授: 陳榮盛
Chen, Rong-sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 143
中文關鍵詞: 多晶片模組無鉛錫球二階子模型田口品質工程反應曲面法
外文關鍵詞: Response surface method, Taguchi Method, multi-chip module (MCM), lead-free solder, 2nd order Sub-modeling
相關次數: 點閱:120下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多晶片模組是指將一個以上的裸晶,封裝在同一個構裝體中。其目的在於節省空間、提高性能速度、降低功率消耗、節省封裝乃至於整個模組的成本。多晶片模組由許多元件所組成,當受到溫度循環負載,由於各元件材料因熱膨脹係數的不一致而導致構裝結構變形,進而使錫球產生疲勞破壞,使構裝體失效。本文以多晶片模組為探討對象,在溫度循環負載下,探討組成元件的材料性質及幾何尺寸對其可靠度的影響。
    本文以多晶片模組為研究對象,其組成元件含有散熱片、熱黏膠、晶片、底填膠、結構黏膠、基板、印刷電路板及Sn3.5Ag無鉛錫球,首先以能量法為基礎的Surface Evolver軟體計算出錫球的外型曲線,再將錫球的外型曲線資料代入ANSYS有限元素分析軟體建立三維條狀分析模型,並導入本文所發展的二階子模型(2nd order Sub-Modeling)進行分析,並簡化模型,即將晶片與基板間的底填膠與錫球的覆晶結構,以等效平板代替。在無鉛錫球材料行為方面,採用多線性等向硬化模式,並以葛拉佛拉-阿瑞尼阿斯數學模式描述無鉛錫球塑性與潛變行為模式,其他元件之材料皆以彈性模型描述之。再依JEDEC Test Method A104-B的規範,施予多晶片模組構裝由-40℃~125℃之溫度循環負載,共十個循環。由有限元素分析可得基板與印刷電路板間最外側錫球之變形、應力與應變及遲滯曲線等機械行為之變化情形,將所求得的等效應變範圍值代入Coffin-Manson計算公式中,可計算出錫球之疲勞壽命。
    為驗證所發展的二階子模型分析法的精確性與效率,將其與全域精細網格模型作比較。在同溫度循環負載下,兩者的等效應變範圍差異僅有1.25%,其結果相當一致。然二階子模型僅須全域精細模型24%的計算時間,所需的硬碟容量也只要全域精細模型的38%。
    其次,針對多晶片模組中基板與印刷電路板間之錫球的上錫球墊與下錫球墊半徑、印刷電路板厚度與熱膨脹係數以及基板厚度與熱膨脹係等共六個參數進一步分析對多晶片模組可靠度的影響。首先,進行單一因子分析以評估各因子對封裝結構疲勞壽命的效應。接著採用田口方法對多晶片模組進行最佳化分析,再以反應曲面法找出描述多晶片模組疲勞壽命的解析解,並得到多晶片模組的最佳設計,同時與田口方法之結果進行討論。最後,以反應曲面法分析各因子間的交互作用對錫球疲勞壽命的影響。
    由單一因子分析結果顯示,同時減少上、下錫球墊半徑、固定上錫球墊而增加下錫球墊半徑、固定下錫球墊而減少上錫球墊半徑、減小印刷電路板厚度、增加印刷電路板熱膨脹係數、減小基板厚度或降低基板熱膨脹係數,皆能有效提高多晶片模組疲勞壽命。
    以田口品質工程分析之最佳製程參數之等效應變範圍為0.903%,及對應的錫球疲勞壽命為5599個循環,與原始製程參數設計之等效應變範圍4.779%,對應的錫球疲勞壽命87個循環比較,等效應變範圍減少了81%,而疲勞壽命值約提昇了64倍,對構裝體可靠度有顯著之改善。
    最後,以反應曲面法分析,並經統計檢定,以確認模型的配適性,而此反應曲面為一修正的立方項模型(Reduced Cubic Model),據此可求得最佳化設計組合的等效應變範圍為0.9059%,及對應的錫球疲勞壽命為5554個循環,而經驗證實驗所得到的等效應變範圍為0.9237%,及對應的錫球疲勞壽命為5289個循環兩者相當接近,接著與田口品質工程分析所得的最佳化結果作比較,兩種方法顯示所預測出各控制因子的最佳化趨勢與錫球的可靠度都相當一致。此外,將反應曲面法所求得各控制因子對錫球疲勞壽命的影響趨勢與單因子分析及田口品質工程得到的結果進行比較,其趨勢完全一致,亦進一步驗證所建立的反應曲面之可靠性。

    Multi-chip module (MCM) is a single package, which encapsulates more than one die. The purpose is to reduce the dimension, improve performance, lower power consumption and save the cost. A MCM package consists of various components, when it is under a temperature cycling load, due to the mismatch of coefficients of thermal expansion (CTE) of components, the package tends to deform and lead to fatigue failure of solder joints. Therefore, this paper focused on a MCM model under thermal cycle loading to investigate the effects of component’s material and geometry on the fatigue life of 96.5Sn3.5Ag lead-free solder joints in a MCM assembly. The components of MCM include heatsink, thermal adhesive, chips, underfill, structural adhesive, substrate, printed circuit boards (PCB) and Sn3.5Ag lead-free solder ball.
    Surface Evolver, an energy-based approach software is applied to calculate the shape of the solder ball, then bring this data into ANSYS, a finite element analysis software, to generate a 3-D finite element sliced bar-like model and use Second-order Sub-Modeling to perform the analysis in order to simplify numerical simulation of the model, an effective substitution for solder joints/underfill between the chip and the substrate is adopted turning the complex geometry to a simple isotropic layer. About the material behavior of the lead-free solder, the multi-linear isotropic hardening model is selected, using Garofalo-Arrhenius mathematical model to describe its plastic and creep behavior. The material’s properties for other components are assumed to be linear elastic.
    According to JEDEC Test Method A104-B thermal cycle loading between 40℃ to 125℃ up to 10 cycles is applied to the MCM package. Hereby, we computed the deformation, stress, strain and hysterisis curve of the outermost solder joint (between substrate and PCB) by finite element analysis. The equivalent strain range is substituted into Coffin-Mansion formula to estimate the fatigue life of solder joint. For efficiently running numerical simulation Second-Order Sub-model is developed for a simpler simulation. For verifying the accuracy and efficiency of Second-Order Sub-model we compare it with fine mesh global model under same thermal cycle loading, the results show that the difference of equivalent strain range between these two models is only 1.25%. The calculation time and hard disk capacity required for Second-Order Sub-Modeling is only about 24% and 38% compare to fine mesh global modeling.
    The single-factor experiment was adopted to predict the impact on the fatigue life of MCM by following 6 factors: The upper and lower pad radii of the solder ball,The PCB thickness and CTE,the substrate thickness and CTE. First, the single factor analysis is performed to evaluate the effect of each parameter with the solder ball reliability. Then both Taguchi method and the Response Surface Method (RSM) are applied to obtain an optimal parameter combination to improve the reliability of MCM package. Results from the Single-factor experiment show that the reduction of both upper and lower solder pad radius, fixing the upper solder pad and increasing the lower solder pad radius, fixing the lower solder pad and reducing the upper solder pad radius, reducing the thickness of the PCB, increasing the CTE of PCB, reducing substrate thickness or lower the CTE of substrate, promises to improve the fatigue life of MCM package.
    The optimal design of Taguchi method shows significant improvement, the equivalent strain range is 0.903%. And the fatigue life is 5599 cycles, compare to the original design with equivalent strain range 4.779 %.and the fatigue life 87 cycles, the equivalent strain range reduced about 81% and the fatigue life enhanced about 64 times.
    Response Surface Method is employed to derive a closed-form function in polynomial format to predict the fatigue life for the solder ball. The RSM model predicts a set of optimal design with equivalent strain range 0.9059% and the fatigue life 5554 cycles. And the certified experiment with this optimal design shows that the equivalent strain range is 0.9237% and the fatigue life is 5289 cycles. The RSM model could successfully predict the reliability of the MCM package.

    中文摘要.................................................Ⅰ 英文摘要................................................ IV 誌謝.....................................................VI 目錄................................................... VII 表目錄................................................. XII 圖目錄...................................................XV 符號說明................................................XXI 第一章 緒論 1-1 前言..................................................1 1-2 研究動機與目的........................................4 1-3 文獻回顧..............................................5 1-4 研究方法.............................................10 1-5 章節提要.............................................11 第二章 理論基礎 2-1 研究主題.............................................14 2-2 錫球迴焊過程後之外型預測.............................15 2-3 塑性理論基礎.........................................18 2-3-1 塑性行為模式.......................................18 2-3-2 硬化準則...........................................19 2-3-3 葛拉佛拉-阿瑞尼阿斯潛變模式........................21 2-4 等效材料性質.........................................22 2-5 疲勞機制.............................................24 2-5-1 錫球的疲勞壽命分析.................................25 2-5-2 Coffin-Manson疲勞壽命預測公式......................25 2-6 田口品質工程.........................................27 2-6-1 機能品質特性值.....................................27 2-6-2 直交表.............................................27 2-6-3 自由度.............................................28 2-6-4 損失函數...........................................28 2-6-5 信號雜訊比.........................................29 2-6-6 變異數分析.........................................30 2-6-7 回應表和輔助回應圖.................................33 2-6-8 信心區間...........................................34 2-7 反應曲面法...........................................35 2-7-1 迴歸模型...........................................35 2-7-2 迴歸因子的實驗水準配置.............................38 2-7-3 迴歸模型的配適性...................................40 2-7-4殘差分析............................................42 第三章 分析模型之建立與評估 3-1 多晶片模組構裝分析模型的建立.........................49 3-1-1 多晶片模組構裝體...................................49 3-1-2 建立錫球的外型曲線.................................51 3-1-3 多晶片構裝模型之基本假設條件.......................51 3-1-4 全域模型的分析型態與邊界條件.......................52 3-1-5 局部模型及邊界條件.................................53 3-2 有限元素分析.........................................56 3-3 等效材料模型的導入...................................56 3-4 二階子模型的導入.....................................57 3-5 二階子模型之網格收斂分析.............................59 3-5-1 全域粗糙網格模型網格分割數目.......................59 3-5-2 局部粗糙網格模型網格分割數目.......................60 3-5-3 決定局部精細網格模型分析範圍.......................60 3-6 二階子模型分析法驗證與計算效能.......................62 3-6-1 模型驗證...........................................62 3-6-2 計算效能...........................................62 3-7 二階子模型在熱循環負載下探討.........................63 第四章 單因子實驗之分析 4-1 多晶片模組在溫度循環負載下的行為探討.................79 4-2 單一因子分析實驗的分析結果與討論.....................80 4-2-1 上、下錫球墊半徑對錫球疲勞壽命之影響...............80 4-2-2 印刷電路板的厚度與熱膨脹係數對錫球疲勞壽命之影響...83 4-2-3 基板厚度與熱膨脹係數對錫球疲勞壽命之影響...........84 第五章 以實驗設計法進行多晶片模組的最佳化設計 5-1 以田口品質工程進行多晶片模組的最佳化設計.............94 5-1-1 目標函數的選定.....................................94 5-1-2 決定控制因子與其水準值.............................94 5-1-3 選定田口直交表.....................................95 5-1-4 進行模擬實驗.......................................96 5-1-5 實驗結果與因子效應分析.............................96 5-1-6 最佳化預測與確認實驗..................... .........97 5-2 以反應曲面法進行多晶片模組的最佳化設計...............98 5-2-1 分析方法的選擇與建立...............................98 5-2-2 進行模擬實驗.......................................98 5-2-3 反應曲面的建立、迴歸分析與殘差分析.................98 5-2-4 以反應曲面模型進行多晶片模組的最佳化設計..........101 5-3 以反應曲面模型探討各控制因子對多晶片組可靠度的影響..101 5-3-1 反應曲面模型中各控制因子分別與錫球可靠度的關係....102 5-3-2 以反應曲面探討因子間的交互變化對錫球疲勞壽命的影響104 5-4反應曲面法與田口品質工程的比較.......................107 第六章 結論與建議未來研究方向 6-1 結論................................................125 6-2 未來研究方向........................................129 參考文獻................................................130 附錄 附錄一 以Surface Evolver建構錫球的外型曲線..............134 附錄二 以ANSYS進行有限元素分析..........................139 自述....................................................143

    [1]L.S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnection”, IBM Journal of Research and Development, Vol.120, pp.175-178, 1969.
    [2]A. Mertol, “Application of the Taguchi Method on the Robust Design of Molded 225 Plastic Ball Grid Array Packages”,IEEE Transaction on Com- ponents, Packaging and Manufacturing Technology Part B,pp.734~743,1995.
    [3]S. M. Heinrich, M. Schaefer, S. A. Schroeder and P. S. Lee, “Prediction of Solder Joint Geometry in Array-Type Interconnects”, ASME J. Elec.Pack., Vol. 118, No. 3, pp. 114~121, 1996.
    [4] John H. L. Pang, C. W. Seetoh and Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging by ASME, pp.255-261, 2000.
    [5] Z. Qian, S. Liu, “On the Life Prediction and Accelerated Testing of Solder Joints,” The International Journal of Microcircuits and Electronic Packaging, pp.288-304. 1999.
    [6] John H. L. Pang, D. Y. R. Chong, “Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models,” IEEE Transactions on Advanced Packaging, pp.499-506. 2001.
    [7]I. Guven, V. Kradinov and E. Madenci, “Finite Element Modeling of BGA Packages for Life Prediction,” 2000 Electronic Components and Technology Conference, pp.1059-1063, 2000.
    [8]K.N. Chiang , C.A. Yuan., "An Overview of Solder Bump Shape Prediction Algorithms with Validations", IEEE Transactions on Advanced Packaging, Vol.24, No. 2, pp.158-162, 2001.
    [9]S. Wiese, A. Schubert, “Constitutive Behavior of Lead-free Solders vs. Lead containing Solders Experiments on Bulk Specimens and Flip-Chip Joints,” Electronic Components and Technology Conference, 2001.
    [10]J. H. Lau, “Effects of Microvia Build-Up Layers on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP)”,IEEE Electronic Components and Technology Conference,2001.
    [11]Y. Li, John Xie, T. Verma and V. Wang “Reliability Study of High-Pin-Count Flip-Chip BGA,” IEEE Transaction on Electronic Components and Technology Conference, pp.276-280, 2001.
    [12]X. Zhang, E. H. Wong, M.K. lyer, P. S. Teo, D.Pinjala and S. Sriniva- samurthy, “Thermo-Mechanical Finite Element Analysis in a Multi-Chip Build up Substrate Based Package Design,” Microelectronics Reliability, pp.611-619, 2004.
    [13]X. Zhang, C. Lee, E. H. Wong, M.K. lyer, P. S. Teo, D.Pinjala and S. Sriniva- samurthy “Thermo-Mechanical Analysis for a Multi Chip Build up Substrate Based Package,” Physical and Failure Analysis of Integrated Circuits, pp.67-72, 2001.
    [14]B. Vandevelde, E. Beyne, Kouchi G. Q. Zhang, Jo F. J. M. Caers, D.Vandepitte and M.Baelmans, “Solder Parameter Sensitivity for CSP Life-Time Prediction Using Simulation-Based Optimization Method”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, , No. 4, October, pp. 318~325 2002.
    [15]W.H. Chen, K.N. Chiang and S.R. Lin, “Prediction of Liquid Formation for Solder and Non-Solder Mask Defined Array Packages”, Trans. of ASME, J. of Electronic Packaging, Vol. 124, pp.37-44, 2002.
    [16]John H. L. Pang, T. H. Low, B. S. Xiong and F. X. Che, “Design For Reliability (DFR) Methodology for Electronic Packaging Assemblies,” IEEE Transaction on Electronics Packaging Technology Conference, pp.470-478, 2003.
    [17]T. Y. Tee, H. S. Ng, D. Yap, X. Baraton and Z. Zhong, “Board Level Solder Joint Reliability Modeling and Testing of TFBGA Packages for Telecommunication Applications,” Microelectronic Reliability, pp.1117-1123, 2003.
    [18]A. Yeo, C. Lee and John H. L. Pang, “Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models,” 5th.Int.Conference on Thermal and Mechanical and Experiments in Micro-electronics and Micro-systems, pp.549-555, 2004.
    [19]C. T. Peng, C. M. Liu, J. C. Lin, H. C. Cheng and K. N.Chiang, “Reliability Analysis and Design for the Fine-Pitch Flip Chip BGA Packaging,” IEEE Transcations on Components and Packaging Technologies , Vol. 27, No. 4, pp.684~693 , 2004.
    [20]S. B. Park, B. Sammakia and K. Raghunathan, “Predictive Model for Optimized Design Parameters in Flip-Chip Packages,” Inter Society Conference on Thermal Phenomena, pp.458-464, 2004.
    [21]Y. S. Lai, T. H. Wang, “Verification of Submodeling Technique in Thermo-Mechanical Reliability Assessment of Flip-Chip Package Assembly,” Microelectronics Reliability, pp.575-582, 2004.
    [22]陳重任,“覆晶底填封膠製程參數優化研究,”工業工程與經營資訊學系碩士畢業論文, 2004.
    [23]H. C. Cheng,C.Y. Yu and W. H. Chen, An Effective Thermal-mechanical Modeling Methodology for Large-scale Area Array Typed Packages,” CMES: Computer Modeling in Engineering and Science, 2005.
    [24]梁金條,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析”, 成功大學工程科學系碩士畢業論文, 2005
    [25]A. Yeo, C. Lee and John H. L. Pang, “Flip Chip Solder Joint Reliability Analysis Viscoplastic and Elastic-Plastic-Constitutive Models,” IEEE Transcations on Components and Packaging Technologies, Vol. 29, No.2, pp.355~363, 2006
    [26]C. M. Liu, C. C. Lee and K. N. Chiang, “Enhancing the Reliability of Wafer Level Packaging by Using Solder Joints Layout Design,” IEEE Transcations on Components and Packaging Technologies, Vol. 29, No. 4, pp.877~885, 2006
    [27]T. Y. Tee, H. S. Ng, Z. Zhong and J. Zhou “Board-Level Solder Joint Reliability Analysis of Thermally Enhanced BGAs and LGAs,” IEEE Transcations on Advanced Packaging, Vol. 29, No. 2, pp 284~290, 2006
    [28]陳仕祥“利用Hybrid模型探討多晶片構裝疲勞壽命之最佳化分析,” 成功大學工程科學系碩士畢業論文, 2006
    [29]K. A. Brakke, “Surface Evolver Manual,” Minneapolis, MN, The GeometryCenter, 1994.
    [30]W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints during Power Cycling,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, pp232-237. 1983.
    [31]李輝煌, “田口方法品質設計的原理與實務,” 高立圖書有限公司, pp.338, 2004.
    [32]L. Zhang, S. S. Chee, A. Maheshwari and A. Funcell, “Experimental and Finite Element Analysis of Cavity Down BGA Package Solder Joint Reliability,” IEEE Transaction on Electronics Packaging Technology Conference, pp.391-397, 2000
    [33]郭長祐,“多晶片整合封測技術,” DigiTimes.com,Oct.16, 2006
    [34]K. N. Chiang, Z. N. Liu and C.T. Peng, “Parametric Reliability Analysis of No-Underfill Flip Chip Package,” IEEE on Components and Packaging Technologies, pp.635-640, 2001.
    [35]游晶瑩“大尺寸面積型態構裝錫球的可靠度分析,” 清華大學動力機械工程學系博士畢業論文, 2005
    [36]D. C. Montgomery, “Design and Analysis of Experiments 6th edition,” John Wiley & Sons, 2005
    [37]R. Darveaus, K. Banerji, “Constitutive relations for tin-based solder joints,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology , pp.1013–1024, vol.15, No.6, 1992
    [38]N. Paydar, Y. Tong and H. U. Akay, “A Finite Element Study of Factors Affecting Fatigue Life of Solder Joints, ”Journal of Electronic Packaging, Vol. 116, pp.265-273, 1994
    [39]張豐程 “IC封裝製程中影響銲線品質之參數最佳化研究”,國立高雄第一科技大學碩士畢業論文, 2003
    [40]R. H. Hyers, D. C. Montgomery, “Response Surface Methodology,” John Wiley & Sons,1995
    [41]田口玄一 “田口設計的實驗計畫法,” 中國生產力中心 ,1999

    下載圖示 校內:2008-06-20公開
    校外:2009-06-20公開
    QR CODE