簡易檢索 / 詳目顯示

研究生: 陳彥彰
Chen, Yan-Zhang
論文名稱: 應用 Boussinesq 方程式計算斜坡上之波浪溯升及反射
Using Boussinesq Equation to Calculate Wave Runup and Reflection on a Sloping Bottom
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 68
中文關鍵詞: 有限差分法、Boussinesq 方程式、非線性、頻散性
外文關鍵詞: dispersion property., finite difference method, Boussinesq equation, nonlinearity
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於目前國內從事 Boussinesq 模式的研究仍採用弱非線性的 Boussinesq 方程式,故本文主要目的為發展一套高階全非線性Boussinesq 數值模式,以改善低階 Boussinesq 方程式之弱非線性及弱頻散性,並擴大模式之使用範圍,藉以模擬非線性波浪在變動底床之波場變化。本文並希望利用本文發展之模式計算由不同規則波波浪條件作用於不同斜坡底床之波場變化,並提出波浪之反射率及溯升的經驗公式,以利工程應用。

      本文模式以 Wei 等人 (1995) 之二階非線性 Boussinesq 方程式為控制方程式,再加入 Kennedy 等人 (2000) 之方法以模擬波浪碎波及溯升。在數值模式的建立上,則參考 Wei 及 Kirby (1995) 之研究,為避免數值離散之捨去項造成數值頻散,建議在空間離散上,對一階微分項採四階精確度之中央差分法,二階以上之微分項則離散至二階準確度後進行計算,以解決數值頻散的問題。另外,Wei 和 Kirby (1995) 在計算網格上是以非交錯網格 (non-staggered grid) 進行離散,其會造成數值計算上有鋸齒狀波形的出現,會使得模式較不穩定,為改善此一情況,本文採用 Banijamali (1997) 提出的交錯網格 (staggered grid) 進行有限差分法之離散。在時間離散上,利用四階精確度之 Adams-Bashforth-Moultor 預測與修正 (predictor-corrector) 技巧。

      模式分別計算規則波與不規則波通過潛堤及斜坡底床上的波場變化,計算結果並與理論值或試驗值進行一系列比較驗証,用以確認本文模式適用於近岸波場的模擬。本文模式同時計算 160 組於不同的規則波浪傳遞於各種斜坡底床上的波場分佈,並分析其堤面的溯升高度及堤前的波浪反射率,再根據 Hunt (1956) 之波浪溯升經驗公式及 Battjes (1974) 之波浪反射率經驗公式,將計算結果進行回歸分析,提出可適用於較廣泛範圍的經驗公式。

      Within the past decades, the researches about Boussinesq equations in Taiwan have been focused on the weak nonlinearity ones. Therefore, to improve the weak nonlinearity and weak dispersion, the main purpose of this paper adopts a set of high-orders of all nonlinear Boussinesq numerical model by expanding the scope of application of the model to simulate the nonlinear wave field change in the varying bottom bed. This paper utilizes the model of this paper to calculate the wave field change that acted on different slope bottom beds by different regular wave terms, and provides the experience formula of wave runup and the reflection with favorable engineering application.

      The model of this paper is based on the 2nd order fully nonlinear Boussinesq equations of Wei et al. (1995) and methods of Kennedy et al. (2000) to simulate wave breaking and runup. In terms of the numerical model, this paper adopts Wei and Kirby (1995) research. For preventing the model from dispersing because of canceling the items of numerical model, it is suggested that the first-order difference schemes is fourth-order accuracy and the 2nd-order above difference schemes is 2nd-order accuracy in space. Since the authors noticed that the use of non-staggered grid (according to Wei and Kirby (1995)) could have appearances of the cockscomb wave that it caused the numerical model to be unsteady, this paper adopts the staggered grid that was suggested by Banijamali (1997).

      This model adopts a fourth-order Adams-Bashforth-Moultor predictor-corrector method to advance in time.
    The model proposed in this paper calculates the wave field of the regular wave and irregular wave passing the submerged breakwater and the slopping bottom beds respectively. The check of the results with a series of the theory values or the testing values has confirmed this model suitable for the simulation of the wave fields near shore. This paper provides 160 groups of regular wave passing various slopping bottom beds, and the analysis of the wave runup and the reflection. Finally, this paper provides a large range of the experience formula based on the runup experience formula that proposed by Hunt (1956) and the reflection experience formula that proposed by Battjes (1974).

    目錄 誌謝 I 中文摘要 II ABSTRACT IV 目錄 VI 圖目錄 VIII 表目錄 IX 符號說明 X 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 3 1-2-1 Boussinesq 方程式 3 1-2-2碎波及溯升 6 1-3 本文組織 7 第二章 理論基礎 8 2-1 二階全非線性 Boussinesq 方程式 8 2-2 波浪溯升 12 2-3波浪碎波 14 2-4 反射率公式 16 2-4-1 規則波計算 16 2-4-2 不規則波計算 18 第三章 數值模式 20 3-1數值模式控制方程式 20 3-2方程式的離散 21 3-2-1 空間項之離散 21 3-2-2 時間項之離散 23 3-3 邊界條件 24 3-3-1 完全反射邊界條件 24 3-3-2 消波邊界條件 25 3-3-3 入射波邊界條件 26 第四章 模式驗證 29 4-1 模式基本測試 29 4-1-1 消波邊界測試 29 4-1-2 造波函數測試 31 4-2 波浪通過潛堤之測試 34 4-2-1 規則波試驗 34 4-2-2 不規則波試驗 38 4-3 波浪通過斜坡之測試 40 4-3-1規則波測試 40 4-3-2不規則波測試 46 第五章 結果與討論 48 5-1 往昔之經驗公式 48 5-2 本文分析方法 49 5-3 計算條件及結果 51 5-4 計算結果回歸分析 51 第六章 結論與建議 62 6-1 結論 62 6-2 建議 63 參考文獻 64

    1. Abbott, M. B. and Basco, D. R., Computational Fluid Dynamics, Inc. Longman Scientific and Technical (1989).

    2. Battjes, J. A., “Surf similarity,” Proceedings of 14th International Conference on Coastal Engineering, ASCE, pp. 466-480 (1974).

    3. Beji, S., Ohyama, T., Battjes, J. A. and Nadaoka, K., “Transformation of non- breaking waves over a bar,” Coastal Engineering, pp. 51-61 (1992).

    4. Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal rectangularire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).

    5. Carrier, G. F. and Greenspan, H. P., “Water waves of finite amplitude on a sloping beach,” Journal of Fluid Mechanics, Vol. 4, pp. 97-109 (1958).

    6. Gobbi, M. F. and Kirby, J. T., “A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to ,” Coastal Engineering, Vol. 37, pp. 57-96 (2000).

    7. Goda, Y. and Suzuki, Y., “Estimation of incident and reflected waves in random wave experiments,” Proceedings of the Fifteenth International Conference on Coastal Engineering, ASCE, Hawaii, pp. 628-650 (1976).

    8. Gopalakrishnan, T. C., “A moving boundary circulation model for regions with large tidal flats,” Internal Journal for Numerical Methods in Engineering, 28, pp. 245-260 (1989).

    9. Heitner, K. L. and Housner, G. W., “Numerical model for tsunami runup,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 96, pp. 701-719 (1970).

    10. Horikawa, K. and Kuo, C. T., “A study on wave transformation inside surf zone,” Proceedings of 10th International Conference on Coastal Engineering, Tokyo, ASCE, pp. 217-233 (1966).

    11. Hsu, T. W., Yang, B. D., Tseng, I. F. and Chou, S. E., “A 2nd-order fully nonlinear Boussinesq equations,” Proceedings of 5th International Conference on Hydrodynamics, Tainan, pp. 389-394 (2002a).

    12. Hsu, T. W., Yang, B. D., Tsai, J. Y. and Chou, S. E., “A Boussinesq model of nonlinear wave transformation,” Proceedings of 11th International Offshore and Polar Engineering Conference (EI), Kyushu, Vol III., pp. 156-160 (2002b).

    13. Hunt, I. A., “ Design of seawalls and breakwaters, ” Journal of the Waterways and Harbors Division, ASCE, WW3, September, pp. 123-152 (1959).

    14. Kennedy, A. B., Chen, Q., Kirby, J. M. and Dalrymple, R. A., “Boussinesq modeling of wave transformation, breaking, and runup. I: 1D,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol.126, No.1, pp. 39-47 (2000).

    15. Kirby, J. M., Wei, G., Chen, Q., Kennedy A. B. and Dalrymple R. A., Fully nonlinear Boussinesq wave model Documentation and user’s manual, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, CACR-98-06 (1998).

    16. Lynett, P. J., Wu, T. R. and Liu, L. F., “Modeling wave runup with depth –integrated equations ,” Coastal Engineering, Vol. 46, pp. 89-107 (2002).

    17. Madsen, P. A. and Sørensen, O. R., “A new form
    of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowly-varying bathemetry,” Coastal Engineering, Vol. 18(3/4), pp. 183-204 (1992).

    18. Madsen, P. A., Sørensen, O. R. and Schäffer H. A., “Surf zone dynamics simulated by a Boussinesq-type model. Part I: Model description and cross-shore motion of regular waves,” Coastal Engineering, Vol. 32, pp. 255-287 (1997a).

    19. Madsen, P. A., Sørensen, O. R. and Schäffer H. A., “Surf zone dynamics simulated by a Boussinesq-type model, Part II: Surf beat and swash oscillations for wave groups and irregular waves,” Coastal Engineering, Vol. 32, pp. 289-319 (1997b).

    20. Madsen, P. A., Bingham, H. B. and Liu, H., “A new Boussinesq method for fully nonlinear waves from shallow to deep water,” Journal of Fluid Mechanics, Vol. 462, pp. 1-30 (2002).

    21. Mase, H. and Iwagaki, Y., “Wave height distribution and wave grouping in surf zone,” Proceedings of 18th International Conference on Coastal Engineering, pp. 57-78 (1982).

    22. Mase, H., “Frequency down-shift of swash oscillation compared to incident waves,” Journal of Hydraulic Research, Delft ,The Netherlands, 33(3), pp. 397-411 (1995).

    23. Miche, R., “Le pouvoir reflechissant des ourvrages maritime exposes a l’action de la houle,” Ann. Ponts et Chausses , 121e Annee, pp. 285-319 (1951).

    24. Nagayama, S., Study on the change of wave height and energy in the surf zone, Bachelor thesis, Yokohama National University (1983).

    25. Nwogu, O., “An alternative form of the Boussinesq equations for modeling the propagation of waves from deep to shallow water,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 119(6), pp. 618-638 (1993).

    26. Peregrine, D. H., “Long waves on a beach,” Journal of Fluid Mechanics, Vol. 27(4), pp. 815-827 (1967).

    27. Petera, J. and Nassehi, V.,“A new two-
    dimensional finite element model for the shallow water equations using a Lagragian framework constructed along fluid particle trajectories,” International Journal for Numerical Methods in Engineering,, 39, 4159-4182 (1996).

    28. Saville, T. Jr., “Wave run-up on shore structures,” Journal of the Waterways and Harbors Division, WW2, ASCE, Vol. 82, pp. 373-384 (1956).

    29. Schäffer, H. A., Madsen, P. A. and Deigaard R., “A Boussinesq model for waves breaking in shallow water,” Coastal Engineering, Vol. 20, pp. 185-202 (1993).

    30. Schäffer, H. A. and Madsen, P. A., “Further enhancements of Boussinesq-type equations,” Coastal Engineering, Vol. 26, pp. 1-14 (1995).

    31. Synolakis, C. E., The run-up of long waves, Ph.D. thesis, Calif. Inst. Technol., Pasadena, Calif. (1986).

    32. Stokes, G. G.,“On the theory of oscillatory waves,” Transactions of the Cambridge Philosophical Society, Vol. 8, pp. 441-455 (1847).

    33. Tao, J., Computation of wave run-up and breaking, Internal Report, Danish Hydraullics Institute, Horsholm Denmark (1983).

    34. Tao, J., “Numerical modeling of wave runup and breaking on the beach,” Acta Oceanologica Sinica, Beijing, Vol. 6(5), pp. 692-700 (1984).

    35. Tsai, C. P., Chen, H. B. and Hsu, R. C., “Calculations of wave transformation across the surf zone,” Ocean Engineering, in press (2001).

    36. Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R., “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” Journal of Fluid Mechanics, Vol. 294, pp.71-92 (1995).

    37. Wei, G. and Kirby, J. T., “Time-dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 121, pp. 251-263 (1995).

    38. Witting, J. M., “A unified model for the evolution of nonlinear water waves,” Journal of Computational Physics, Vol. 56, pp. 203-236 (1984).

    39. Zelt, J. A., “The run-up of nonbreaking and breaking solitary waves,” Coastal Engineering, Vol. 15, pp. 205-245 (1991).

    40. 黃煌煇、江文山、劉千,「以 Boussinesq 方程式分析波浪通過潛堤之倍頻能量演變」,第二十二屆海洋工程研討會論文集,台灣高雄,第 272-278 頁 (2000).

    41. 黃煌煇、江文山、劉景毅,「不規則波淺化模擬」,第二十三屆海洋工程研討會論文集,台灣台南,第 57-63 頁 (2001).

    42. 林銘崇、丁肇隆、張國緯,「應用 Boussinesq 方程式在一維波浪場上之數值計算」,海洋工程學刊,第2卷,第1期,第 15-31 頁 (2002).

    43. 許泰文,藍元志,蔡金晏,「有限元素法波場模式之延伸」,二十四屆海洋工程研討會,台中,34-41頁 (2002)。

    44. 林銘崇,丁肇隆,許朝敏,張國緯,「應用 Boussinesq 在波場之計算」,二十五屆海洋工程研討會,基隆,343-350 頁 (2003)。

    45. 許泰文,歐善惠,楊炳達,周世恩,「Boussinesq 方程式應用於波浪通過人工沙漣之研究」,二十五屆海洋工程研討會,基隆,133-140 頁 (2003)。

    下載圖示 校內:立即公開
    校外:2004-07-29公開
    QR CODE