| 研究生: |
於睦程 Yu, Mu-Cheng |
|---|---|
| 論文名稱: |
應用模糊控制於自主型水下載具之避碰操控 The Application of Fuzzy Control on the Anti-collision Steering of the Autonomous Underwater Vehicle |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 潛航器 、障礙物避碰 、自調式模糊控制 、BK三角副乘積 |
| 外文關鍵詞: | AUV, Obstacle-avoidance, Fuzzy control, BK Triangle Sub-product |
| 相關次數: | 點閱:148 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在尋找一可行之自主型水下載具障礙物避碰方法,並探討其在不同環境因素底下經模糊控制系統之操控後所表現出的避碰性能,首先以PMM(Planar Motion Mechanism)試驗尋找AUV之流體動力係數供動態數值模擬程式來進行六度運動模擬,以做為開發控制系統的平台,為快速開發控制系統,試以自調式模糊控制器來進行AUV的運動操控。
障礙物避碰方法使用水下影像偵測之模擬,將影像區分為七個區塊做為七個待選航向,並利用BK三角副乘積將七個待選航向之安全程度與前往路徑點之效率做運算以即時判斷出最佳航向。
數值模擬中以四種不同障礙物地形來做為AUV障礙物避碰性能模擬的平台,首先討論自調式模糊控制與靜態模糊控制之表現差異,又針對不同的水下能見度與不同的安全程度設定來做避碰性能之比較,再加入外界干擾探討AUV在洋流中的避碰性能與可控性,最後則獨立探討當AUV在進行垂向避碰時之表現。結果顯示利用此避碰方法使AUV在靜水中能夠以足夠的安全距離通過行徑路線上的障礙物,研究結果將提供給實際水下影像偵測障礙物避碰做為一參考方法。
The purpose of the thesis is to develop an autonomous underwater vehicle (AUV) with obstacle-avoidance function. The performance of anti-collision using the fuzzy controller in the different ocean environment is studied. The PMM (Planar Motion Mechanism) test is applied to obtain the related hydrodynamic coefficients in order to investigate the six degrees of freedom of motions, which serves as the platform for developing the control system. In order to quickly develop the system, the self-tuning fuzzy controller is adopted in the AUV motion steering.
The underwater image detection simulation is used as the tool for the obstacle avoidance. The image token by the camera is partitioned into seven sections which represent different candidate heading angle. Using the fuzzy relation of BK Triangle Sub-product to calculate the relationship between safety degree and route accuracy, then select the successive optimal heading for the AUV avoid obstacle.
In the numerical simulations, four types of obstacle maps are selected as the platform to investigate the anti-collision steering performance. Fist, the difference between the self-tuning fuzzy controller and the static one is compared and the different underwater visibility and safety set are then discussed. The effects of current on the anti-collision performance and the control performance are also investigated. Finally, we independently study the performance to avoid obstacle by vertical motion. The results reveal that AUV can achieve the mission with enough safe distance in calm water. The present study can offer the useful information to the AUV obstacle-avoidance reference while applying the underwater image detection method.
1.Alan, C. S., “Using a genetic algorithm to learn strategies for collision avoidance and local navigation,” in Proc. 7th Int. Syrup. On Unmanned Untethered, Submersible Technology, Durham, NH, pp. 213-225, 1991.
2.An, P. E., Healey, A. J., Park, J., and Smith, S. M. “Asynchronous data fusion for AUV navigation via heuristic fuzzy filtering techniques,” In Proceedings of IEEE Oceans, pp. 397-402, October 1997.
3.Antonelli, G., Chiaverini, S., Finotello, R. and Schiavon, R., “Real-time path planning and obstacle avoidance for RAIS: An autonomous underwater vehicle,” IEEE J. Ocean. Eng., vol. 26, no. 2, pp. 216–227, Apr. 2001.
4.Bandler, W. and Kohout, L. J., “Semantics of implication operators and fuzzy relational products,” Internat. J. Man-Mach. Stud. Vol. 12, pp. 89–116, 1980
5.Bui, L. D. and Kim, Y. G., “An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation,” Fuzzy Sets and Systems, Vol. 157, pp. 560-577, 2006
6.Carroll, K. P., McClaran, S. R., Nelson, E. L., Barnett, D. M., Friesen, D. K. and Williams, G. N., “AUV path planning: An A∗ approach to path planning with consideration of variable vehicle speeds and multiple overlapping, time-dependent exclusion zones,” in: Proceedings of the 1992 IEEE Symposium on Autonomous Underwater Vehicle Technology, pp. 79–84, 1992
7.Carreras, M., Batlle, J., Ridao, P. and Roberts, G. N., “An overview on behaviour-based methods for AUV control,” MCMC2000, 5th IFAC Conference on Manoeuvring and Control of Marine Crafts. Aalborg, Denmark, August 2000
8.DeMuth, G. and Springsteen, S., “Obstacle avoidance using neural networks,” Autonomous Underwater Vehicle Technology, 1990. AUV '90., Proceedings of the (1990) Symposium on , vol., no., pp.213-215, 5-6 Jun 1990
9.DeBitetto, P. A., “Fuzzy logic for depth control of unmanned undersea vehicles,” IEEE Journal of Oceanic Engineering, Vol. 20 NO. 3, pp. 242-248, 1995
10.Horner, D. P., Healey, A. J. and Kragelund, S. P. “AUV Experiments in Obstacle Avoidance”, Proceedings of IEEE Oceans, September 2005
11.Kondo, H. and Ura, T., “Navigation of an AUV for investigation of underwater structures,” Control Engineering Practice Journal of IFAC, Vol. 12, pp. 1551-1559, 2004.
12.Khanmohammadi, S., Alizadeh, G. and Poormahmood, M., “Design of a Fuzzy Controller for Underwater Vehicles to Avoid Moving Obstacles,”Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, ” vol., no., pp.1-6, 23-26 July 2007
13.Lynn, R. F. and Healey, A. J. “Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle,” Proceedings of the IFAC GCUUV Conference, Swansea, Wales, 2003.
14.Loebis, D., Sutton, R., Chudley, J. and Naeem, W., “Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system,” Control Eng. Pract., Vol. 12, pp. 1531-1539, 2004.
15.Lee, Y. I., Kim, Y. G. and Ladislav, J. K., “An intelligent collision avoidance system for AUVs using fuzzy relational products,” Information Sciences, Vol. 158, pp. 209–232, 2004
16.Mayank, S., “Obstacle avoidance using a laser scanner on Bearcat III”, Masters Thesis, University of Cincinnati, 2001.
17.Smith, S. M., Rae, G. J. S. and Anderson, D. T., “Applications of Fuzzy Logic to the Control of an Autonomous underwater Vehicle,” IEEE International Conference on Fuzzy Systems, pp. 1099-1106, 1993.
18.Song, F. and Smith, S. M., “Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model,” in Proc. IEEE Conf. OCEANS, Providence, RI, pp. 835–840, Sep. 2000.
19.Teo, K., Ong, K. W. and Lai, H. C. “Obstacle detection, avoidance and anti collision for MEREDITH AUV, ” OCEANS 2009, MTS/IEEE Biloxi – Marine Technology for Our Future: Global and Local Challenges, Vol., no., pp.1-10, 26-29, Oct. 2009
20.Wang, J. S. and Lee, C. G., “Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle,” IEEE Trans. Robot. Autom., Vol. 19, No. 2, pp. 283–295, Apr. 2003
21.Xu, H. L. and Feng, X. S. “An AUV fuzzy obstacle avoidance method under event feedback supervision,” OCEANS 2009, MTS/IEEE Biloxi – Marine Technology for Our Future: Global and Local Challenges, pp.1-6, 26-29, Oct. 2009.
22.Yvan, P., Ioseba, T. R. and David, M. L., “Underwater Vehicle Obstacle Avoidance and Path Planning Using a Multi-Beam Forward Looking Sonar,” IEEE Journal of Oceanic Engineering, Vol. 26, Apr 2001.
23.Ye, C., Yung, N. H. C. and Wang, D., “A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 1, pp. 17–27, Feb. 2003.
24.Yasuhisa, H., “Planar Motion Mechanism,” West Japan Fluid
Engineering Laboratory Co., Ltd.,2004.
25.Zadeh, L.A., “Fuzzy Sets*,” Information and Control,Vol. 8, pp. 338-353, 1965
26.吳長恩,虛擬實境技術於水下載具操縱模擬之應用,國立成功大學系統及船舶機電工程學系碩士論文,民國九十七年七月。
27.邱顯清,小水面雙體船穩定翼之自調式模糊控制,國立成功大學系統及船舶機電工程學系碩士論文,民國八十七年六月。
28.范尚雍,船舶操縱性,國防工業出版社,1998年七月
29.侯章祥,臍帶電纜及洋流對潛航器運動之影響,國立成功大學系統及船舶機電工程學系碩士論文,民國九十四年六月。
30.黃世銘,應用模糊理論實現迷你水下載具之深度控制,國立成功大學系統及船舶機電工程學系碩士論文,民國九十七年六月。
31.張培恩,波浪對潛航器運動之影響及控制分析,國立成功大學系統及船舶機電工程學系碩士論文,民國九十三年六月。
32.蘇木春;張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司,民國八十六年十二月。