| 研究生: |
羅山翰 Hasan, Ahmad Darori |
|---|---|
| 論文名稱: |
利用數值模擬探討EMD方法分離之衝擊波荷載對離岸風力發電機基樁的影響 Numerical Simulation of the Impact of Slamming Wave Loads Decomposed by the EMD Method on the Offshore Wind Turbine Foundation |
| 指導教授: |
林宇銜
Lin, Yu-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 碎波 、波浪荷載 、計算流體力學方法 、離岸風力發電機基樁 |
| 外文關鍵詞: | Breaking wave, Wave load, Computational fluid dynamics (CFD), Offshore wind turbine foundation |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究擬利用計算流體動力學方法模擬斜坡引發之碎波事件,並進一步分析了波浪對離岸風力發電機基樁的衝擊過程中的交互作用。經由Reynolds Averaged Navier-Stokes (RANS) equation並結合有限體積法在二相流之耦合,可利用Boussinesq方法得到雷諾應力,進一步在自由液面的數值設定上採用RNG k-ε紊流模型。基樁幾何外型及計算流域皆透過六面體網格生成。藉由Irschik在德國漢諾威的大型造波水槽所進行的實驗結果驗證,並且提供了準確的波浪波高、波浪荷載及基樁結構上的壓力數據。本文將探討離岸風力發電機基樁在波浪作用過程中受碎波相似參數ξ_0、波高和波浪載荷等條件的影響,並通過EMD和HHT方法將波浪載荷的總力分解為準靜態力和砰擊力。此外,本研究將砰擊係數、上升時間、持續時間及砰擊力分析的結果進行總結。同時,本研究也將討論離岸風力發電機基樁周圍正規化溯升高度的分佈情形。
This study used computational fluid dynamics (CFD) to simulate breaking waves induced by sloping beds and to analyzes the impact of these waves on an offshore wind turbine (OWT) foundation. A Reynolds-Averaged Navier-Stokes (RANS) equation was established to numerically analyze the water surface of two-phase fluids by using a volume of fluid method. The Boussinesq approach was used to determine the Reynolds stresses for developing a Re-Normalisation Group (RNG) k-ε turbulence model. The cut-cell method was used to generate grids for the monopile geometry and the computational domain. The results of the numerical model for the wave elevation, wave load, and pressure on the foundation structure were validated by comparing them with the experimental results obtained by Irschik (2002) at the Large Wave Channel, Hannover, Germany. Next, the wave elevation and wave load subject to the surf similarity parameter ξ0 on the OWT foundation were examined. By using empirical mode decomposition (EMD) and the Hilbert–Huang transform (HHT), the total wave load forces were decomposed into the quasi-static force and slamming force. Furthermore, the wave load analysis would be summarized by considering the slamming force coefficient, rising time, duration time, and impulse. The normalized run-up height of the wave around the OWT foundation was also examined.
1. Morison J, O., Johnson J, And Schaaf S, The Force Exerted By Surface Waves On Piles. Journal of Petroleum Technology 1950. 189: p. p. 149-154.
2. Goda Y, H.S., and Kitahata M, Study Of Impulsive Breaking Wave Forces On Piles. 1966, Port and Harbour Research Institute.
3. Alagan Chella, A.T., and Dag Myrhaug, An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures. Energy Procedia, 2012. 20: p. p. 217-226.
4. Zhao Q, A.S., and Tanimoto K, Numerical Simulation of Breaking Waves By A Multi-Scale Turbulence Model. Coastal Engineering, 2004. 51: p. p. 53-80.
5. Pengzhi Lin, P.L., A Numerical Study Of Breaking Waves in The Surf Zone. Journal of Fluid Mech, 1998. 359: p. p. 239-264.
6. Chella A, H.B., Myrhaug D, and Muskulus M, Breaking Characteristics and Geometric Properties of Spilling Breakers Over Slopes. Coastal Engineering, 2014. 95: p. p. 4-19.
7. Aggarwal, H.B., Myrhaug D, and Chella A, Characteristics of Breaking Irregular Wave Forces on A Monopile. Applied Ocean Research, 2019. 90.
8. Kamath, C.A., Hans B, and Øivind A, Breaking Wave Interaction with A Vertical Cylinder and The Effect of Breaker Location. Ocean Engineering, 2016. 128: p. p. 105-115.
9. Jose J, C.S., Lee K, and Gudmestad O, Breaking Wave Forces on An Offshore Wind Turbine Foundation (Jacket Type) in The Shallow Water, in International Ocean and Polar Engineering Conference. 2016: Rhodes, Greece.
10. Eca L, V.G., Toxopeus S, and Hoekstra M, Numerical Errors in Unsteady Flow Simulations. Journal of Verification, Validation, and Uncertainty Quantification, 2019. 4: p. p. 021001-1 - 021001-10.
11. Rocha, L.E., and Guilherme Vaz, On The Numerical Convergence Properties of The Calculation of The Flow Around The KVLCC2 Tanker in Unstructured Grids, in International Conference on Computational Methods in Marine Engineering. 2017.
12. Batchelor, An Introduction to Fluid Dynamics. 1967, England: Cambridge University
13. ANSYS, I., ANSYS Fluent Theory Guide. Vol. 15. 2013.
14. Hinze, Turbulence. 1975, New York: McGraw-Hill Publishing Co.
15. Victor Yakhot, S.A.O., Renormalization Group Modeling, and Turbulence Simulations, in In International Conference on Near-Wall Turbulent Flows. 1993: Arizona.
16. Vinay R. Gopala, B.G.M., Volume of Fluid Methods for Immiscible-Fluid and Free-Surface Flows. Chemical Engineering Journal, 2007. 141: p. p. 204-221.
17. Salim M, S.C.C. Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows. in Proceedings of the International MultiConference of Engineers and Computer Scientists. 2009. Hong Kong.
18. Stanković B, S.A., Sijerčić M, Belošević S, and Čantrak S, Evaluation and Limitations of Standard Wall Functions in Channel and Step Flow Configurations. Journal of the Serbian Society for Computational Mechanics, 2014. 8: p. pp 1-22.
19. Park J, K.M., and Miyata H, Fully Non-linear Free-surface Simulations By a 3D Viscous Numerical Wave Tank. International Journal for Numerical Methods in Fluids, 1999. 29: p. 685–703.
20. Versteeg H, M.W., An Introduction Computational Fluid Dynamics: The Finite Volume Method, ed. L.S.a. Technical. 1995.
21. J.L. Ferzieger, M.P., Computational Methods for Fluid Dynamics. 1996, Heidelberg: Springer-Verlag.
22. Piotr Cyklis, P.M., The Influence of The Spatial Discretization Methods on The Nozzle Impulse Flow Simulation Results Procedia Engineering, 2016. 157: p. 396-403.
23. Weggel, J.R., Maximum Breaker Height. Journal Water, Harbours, and Coastal Engineering, 1972. 98: p. 529-548.
24. Battjes, J.A. Surf Similarity. in Proceedings of 14th Coastal Engineering Conference, American Society of Civil Engineers. 1974. Copenhaguen, Denmark.
25. Hallermeier, R., Nonlinear Flow of Wave Crests Past a Thin Pile. Journal of the Waterways Harbors and Coastal Engineering Division, 1976. 4: p. 365-377.
26. Oumeraci H, K.A., Analysis of the Dynamic Response of Caisson Breakwaters. Coastal Engineering, 1994. 22: p. 159-183.
27. Y.S. Lee, K.D.L., On The Dynamic Response of Laminated Circular Cylindrical Shells Under Impulse Loads. Computers & Structures, 1995. 63: p. 149-157.
28. J.N. Reddy, A.K., Dynamic Response of Cross-Ply Laminated Shallow Shells According to A Refined Shear Deformation Theory The Journal of the Acoustical Society of America, 1989. 85.
29. Irschik. Breaking Wave Characteristics For The Loading Of A Slender Pile. in International Conference on Coastal Engineering. 2002. Cardiff, Wales.
30. N.E. Huang, Z.S., Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu, The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. The Royal Society, 1998. 454: p. 903-995.
31. Long, S.R., Huang, N.E., Tung, C.C., Wu, M.L., and Lin, R. Q., The Hilbert Techniques: An Alternate Approach for Non-Steady Time Series Analysis. IEEE Geoscience Remote Sensing Society, 1995. 3: p. 6-11.
32. Norden E. Huang, Z.S., and Steven R. Long, A New View of Nonlinear Water Waves: The Hilbert Spectrum1. Annu. Rev. Fluid Mech, 1999. 31: p. 417–57.
33. Wienke J, O.H., Breaking Wave Impact Force on A Vertical and Inclined Slender Pile-theoretical and Large-scale Model Investigations. Journal of Coastal Engineering, 2005. 52: p. 435-462.
34. Karman, V., The Impact on Seaplane Floats during Landing. 1929.
35. Wagner, H., "Ü ̈ ber Stoss und Gleitvorgänge an de r Oberfläche von Flüssigkeiten. Zeitschrift fü r Angewandte Mathematik und Mechanik, 1932. 12.