簡易檢索 / 詳目顯示

研究生: 江致遠
Chang, Zhi-Yuan
論文名稱: 雙髻鯊型潛體外型流場之模擬
A Simulation Research for the Flow Field of a Submerged Body with Hammerhead Shark Shape
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 雙髻鯊鯊魚盾鱗計算流體力學流體力學
外文關鍵詞: hammerhead shark, placoid scale, CFD, fluid dynamics
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 路式雙髻鯊(Sphyrna Lewis)外型有別於一般水中生物,其頭部扁平而寬大會使阻力上升,但也因此會增加升力,且眼睛及鼻腔能擴大搜索範圍並更顯立體感。眾多研究發現鯊魚表面的盾鱗能降低阻力,本研究進一步以CFD(Computational Fluid Dynamics)探討雙髻鯊頭部翼狀外形及周遭流場變化。
    為模擬鯊魚盾鱗減阻效果,以前人實驗成果為基準,用攝影測量方法建構雙髻鯊型潛體的3D模型,將檔案匯入Rhino 3D繪圖軟體修正後,使用ANSYS FLUENT CFD軟體計算雙髻鯊型潛體流體力學性能。先找出實驗中光滑條件下的摩擦係數(因為在實驗中的光滑條件不等於模擬的光滑條件),得出摩擦係數應設為KS=1.9586E-5,再使用試誤法調整紊流模型中紊流黏度項(μt)中的經驗公式常數a1,找出與鯊魚盾鱗實驗結果相同的減阻值,最後得出a1應設為0.2955。
    CFD的計算結果發現使用模擬盾鱗的雙髻鯊型潛體在阻力方面平均阻力值呈下降趨勢,在摩擦阻力方面趨勢更明顯,而在升力方面則影響不顯著。其次,在雙髻鯊頭部前緣凹槽與鼻腔構造具有流體導向的功能。頭部末端增厚的眼部結構能降低翼尖渦流(Tip vortex)的影響,而在胸鰭方面則因末端較為銳利使翼尖渦流影響較明顯,並且在胸鰭與身體交界處也會產生接面渦流(Junction vortex),使入流穩定度些許下降,也可能導致升力下降。關於流體流經頭部與胸鰭後產生的流體擾動,雙髻鯊型潛體頭部以及胸鰭後面渦量變動對流場的影響極小。

    The shape of Sphyrna Lewis is different from other aquatic creatures. Its flat and wide head can increase resistance and lift. It can also expand the search range of the eyes and nasal cavity. This makes things appear more three-dimensional. Many studies had founded that the placoid scale on the shark surface can reduce resistance. The purpose of this study is to explore the wing-like shape of the head of the hammerhead shark and the around flow field change by CFD(Computational Fluid Dynamics)..
    In order to simulate the drag reduction effect of shark placoid scale. The previous experimental results were used as a benchmark to establish a 3D model of the Submerged Body with Hammerhead Shark Shape which was constructed by photogrammetry. After the files were imported into the Rhino 3D mapping software for correction, the Ansys FLUENT CFD software was used to calculate the hydrodynamic properties of the Submerged Body with Hammerhead Shark Shape. First the friction coefficient with the smooth conditions in the previous experiment was found to be KS=1.9586E-5(the smooth conditions in the experiment are not equal to the simulated smooth conditions). In order to find the same drag reduction value as the experiment result on the shark placoid scale, the trial-and-error method was used to adjust the emperiment formula constant ?1 in the turbulent viscosity term (μ_t) in the turbulence model. Finally, ?1 was concluded to be 0.2955.
    The calculation results of CFD showed that the average resistance value of the Submerged Body with Hammerhead Shark Shape using simulated placoid scale showed a downward trend in terms of resistance. A more obvious trend in terms of frictional resistance, but a less significant impact on lift. The grooves and nasal structures at the leading edge of the head of the hammerhead shark have a fluid-directing function. The thickening of the eye structure at the end of the head can reduce the influence of the tip vortex, while in terms of the pectoral fin, the impact of the tip vortex is more obvious because the end is sharper. The junction vortex will also occur at the junction of the pectoral fin and the body, which will slightly reduce the stability of the inflow or might lead to a decrease in lift. Regarding to the fluid disturbances generated by the flow of fluid through the head and pectoral fin, the changes in the vortex of the Submerged Body with Hammerhead Shark Shape and behind the pectoral fin are weakened at X/L= 0.11, so the effect on the posterior fluid is minimal.

    摘要 I Extend Abstract II 誌謝 X 圖目錄 XIV 表目錄 XVIII 符號說明 XIX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 論文架構 5 第二章 理論背景 6 2-1 統御方程式 6 2-1-1 連續方程式 6 2-1-2 動量方程式 7 2-2 紊流模型 8 2-2-1 SST k-ω 10 2-3 數值模擬及計算方式 11 2-3-1 有限體積法 12 2-3-2 求解器 14 第三章 研究方法 16 3-1 實驗對象及研究對象建模 17 3-1-1 實驗對象建模 17 3-1-2 研究對象 18 3-1-3 研究對象拍攝建模 19 3-1-4 研究對象後處理 19 3-2 電腦模擬設定 24 3-2-1 實驗對象網格劃分 24 3-2-2 研究對象網格劃分 26 3-2-3 邊界條件 29 3-2-4 摩擦係數 29 3-2-5 SST k-ω模型紊流黏度設定 30 3-3 分析計算結果之方法 32 3-3-1 阻力、升力、摩擦及壓力係數 32 3-3-1 紊流強度(Intensite of Turbulence, I) 33 3-3-2 渦量(Vorticity) 33 3-3-3 翼尖渦流(Tip Vortex) 34 3-4 驗證與確認(Verification and Validation) 34 3-4-1 彈型圓柱體 35 3-4-2 雙髻鯊型潛體 41 第四章 結果與討論 45 4-1 雙髻鯊型潛體受力分析 45 4-1-1 全體阻力分析 46 4-1-2 全體升力分析 49 4-2 全體流場分析 52 4-2-1 全體壓力分佈圖 52 4-2-2 全體流線及向量圖 58 4-2-3 流場紊流強度 68 4-2-4 流場渦量 71 4-3 頭部及胸鰭外型研究 76 4-3-1 頭部流場分析 76 4-3-2 胸鰭流場分析 80 4-4 綜合討論 84 結論 85 5-1 結果討論 85 5-2 對工程設計的啟示 86 5-3 未來展望 87 參考文獻 88

    Abel, R. L., Maclaine, J. S., Cotton, R., Xuan, V. B., Nickels, T. B., Clark, T. H., Wang, Z., & Cox, J. P. (2010). Functional morphology of the nasal region of a hammerhead shark. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(4), 464-475.
    Adams, T., Grant, C., & Watson, H. (2012). A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics, 1(2), 66-71.
    Blocken, B., Carmeliet, J., & Stathopoulos, T. (2007). CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11), 941-962.
    Chapman, D. D., & Gruber, S. H. (2002). A further observation of the prey-handling behavior of the great hammerhead shark, Sphyrna mokarran: Predation upon the spotted eagle ray, Aetobatus narinari. Bulletin of Marine Science, 70(3), 947-952.
    Chowdhury, H., Islam, R., Hussein, M., Zaid, M., Loganathan, B., & Alam, F. (2019). Design of an energy efficient car by biomimicry of a boxfish. Energy Procedia, 160, 40-44.
    Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of the Royal Society Interface, 15(139), 20170828.
    Díez, G., Soto, M., & Blanco, J. (2015). Biological characterization of the skin of shortfin mako shark Isurus oxyrinchus and preliminary study of the hydrodynamic behaviour through computational fluid dynamics. Journal of fish biology, 87(1), 123-137.
    Fish, F., & Shannahan, L. (2000). The role of the pectoral fins in body trim of sharks. Journal of fish biology, 56(5), 1062-1073.
    Gaylord, M. K., Blades, E. L., & Parsons, G. R. (2020). A hydrodynamics assessment of the hammerhead shark cephalofoil. Scientific Reports, 10(1), 1-12.
    Gilbert, P. W. (1962). The behavior of sharks. Scientific American, 207(1), 60-69.
    Johnsen, P. B., & Teeter, J. H. (1985). Behavioral responses of bonnethead sharks (Sphyrna tiburo) to controlled olfactory stimulation. Marine & Freshwater Behaviour & Phy, 11(4), 283-291.
    Kajiura, S. M. (2001). Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environmental Biology of Fishes, 61(2), 125-133.
    Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology, 106(1), 19-28.
    Lowe, C. (1996). Kinematics and critical swimming speed of juvenile scalloped hammerhead sharks. The Journal of experimental biology, 199(12), 2605-2610.
    Maia, A., Lauder, G. V., & Wilga, C. D. (2017). Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming. Journal of Experimental Biology, 220(21), 3967-3975.
    Matyushenko, A., & Garbaruk, A. (2016). Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall. Journal of Physics: Conference Series,
    McComb, D., Tricas, T., & Kajiura, S. (2009). Enhanced visual fields in hammerhead sharks. Journal of Experimental Biology, 212(24), 4010-4018.
    Menter, F. (1993). Zonal two equation kw turbulence models for aerodynamic flows. 23rd fluid dynamics, plasmadynamics, and lasers conference,
    Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method. In The finite volume method in computational fluid dynamics (pp. 103-135). Springer.
    Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W., & Holderied, M. W. (2020). Thoracic scales of moths as a stealth coating against bat biosonar. Journal of the Royal Society Interface, 17(163), 20190692.
    Oeffner, J., & Lauder, G. V. (2012). The hydrodynamic function of shark skin and two biomimetic applications. Journal of Experimental Biology, 215(5), 785-795.
    Ott, J., Lazalde, M., & Gu, G. X. (2020). Algorithmic-driven design of shark denticle bioinspired structures for superior aerodynamic properties. Bioinspiration & Biomimetics, 15(2), 026001.
    Rocha, P. C., Rocha, H. B., Carneiro, F. M., da Silva, M. V., & de Andrade, C. F. (2016). A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils. Energy, 97, 144-150.
    Rygg, A. D., Cox, J. P., Abel, R., Webb, A. G., Smith, N. B., & Craven, B. A. (2013). A computational study of the hydrodynamics in the nasal region of a hammerhead shark (Sphyrna tudes): implications for olfaction. PLoS One, 8(3), e59783.
    Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence. MIT press.
    Thomson, K. S., & Simanek, D. E. (1977). Body form and locomotion in sharks. American Zoologist, 17(2), 343-354.
    Van Doormaal, J. P., & Raithby, G. D. (1984). Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical heat transfer, 7(2), 147-163.
    Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: design, fabrication and hydrodynamic function. Journal of Experimental Biology, 217(10), 1656-1666.
    Wilga, C., & Lauder, G. (2002). Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. Journal of Experimental Biology, 205(16), 2365-2374.
    Wilga, C., & Lauder, G. V. (2000). Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. Journal of Experimental Biology, 203(15), 2261-2278.
    Zhang, D.-y., Luo, Y.-h., Xiang, L., & Chen, H.-w. (2011). Numerical simulation and experimental study of drag-reducing surface of a real shark skin. Journal of Hydrodynamics, Ser. B, 23(2), 204-211.
    陳昀嵩. (2018). 雙髻鯊特殊頭部流場之模擬 ,國立成功大學,系統及船舶機電工程學系,碩士論文。

    無法下載圖示 校內:2027-09-19公開
    校外:2027-09-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE