| 研究生: |
闕薪展 Chueh, Shin-Zhang |
|---|---|
| 論文名稱: |
利用兩性離子之半互穿網絡電解質提升水性超級電容器於低溫下之性能表現 Utilizing zwitterionic semi-interpenetrating polymeric network electrolytes for superior performances of aqueous supercapacitors at low temperature |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 雙離子 、半互穿網絡結構 、高效能超級電容器 、水膠電解質 |
| 外文關鍵詞: | zwitterion, semi-interpenetrating network structure, supercapacitor, low temperature |
| 相關次數: | 點閱:105 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩部分,第一部分為加入線性高分子雙離子甲基丙烯酸磺基甜菜鹼(PSBMA)至帶有正電荷四級銨根的單體 META、帶有負電荷磺酸根的單體 AMPS及交聯劑PEGDA所聚合成之半互穿網絡高分子雙離子電解質(ZSIPNE)與未添加PSBMA之雙離子高分子電解質(ZPE)進行比較。PSBMA的添加能使高分子電解質內的非自由水比例增加及半互穿網絡的結構形成,使其在低溫下仍有離子通道供離子傳輸及分子間作用力的增加,造就ZSIPNE在低溫下仍有良好的比電容及離子導電度表現與機械強度的增強。材料分析的部分透過DMA分析,ZPE及ZSIPNE之韌性為9.53 MPa及11.76 MPa,楊氏模數為0.784 MPa及0.154 MPa,結果顯示ZSIPNE擁有較好的機械性質;透過拉曼分析可得知,ZSIPNE中非自由水的比例比ZPE高出了14%;利用DSC分析,ZSIPNE能有效將非自由水的結冰溫度自ZPE的-14.3 ℃延後至-21.2 ℃,證實了ZSIPNE結構中之非自由水比例較高,增加水膠電解質的抗凍能力,與拉曼結果相符。電化學的部分,從Arrhenius plot可以看出,ZSIPNE折點的產生從原本的-10 ℃延後至-20℃,此現象的產生是因為ZSIPNE結構中之非自由水比例較高,亦與DSC及拉曼的結果相符。超級電容部分,當溫度從25 ℃降低至-40 ℃時,C-ZPE及C-ZSIPNE的電容保存率分別為18 %及43 %,在-40 ℃下離子導電度則分別為8.16 mS cm-1及28.5 mS cm-1,儲能表現方面,在-40 ℃以6 A/g的充放電下C-ZPE及C-ZSIPNE的比電容分別為30 F/g和108 F/g,比能量密度分別為16.7 Wh/g及90.4 Wh/g,在低溫下C-ZSIPNE的各項表現皆較為優異。
第二部分則是為了解決羧甲基纖維素(CMC)黏著劑在低溫下會結凍的問題,因此將CMC改植為CMC-SBMA並以ZSIPNE作為電解質並進行低溫電化學分析,在-40 ℃下的電容保存率從原先的43%大幅提升至66%,最後選擇以ZSIPNE作為電解質,CMC-SBMA作為黏著劑組裝之超級電容在-20 ℃下進行循環充放電測試,在進行3000圈充放電後仍有90.2%之電容維持度。本研究證實了使用雙離子型高分子電解質及黏著劑,可有效增強超級電容在低溫下之表現及機械性質。
This study was divided to two parts. In the first part, zwitterionic semi-interpenetrating network electrolyte (ZSIPNE) was synthesized by negative charge monomer (AMPS), positive charge monomer (META) with the addition of a linear zwitterionic polymer PSBMA. Both the electrolytes are soaked in 17M NaClO4. DMA showed that ZPE and ZSIPNE had a toughness of 9.53 MPa and 11.76 MPa, Young’s modulus of 0.784 MPa and 0.154 MPa. Raman showed that ZSIPNE had 14% proportion of non-freezable water higher than ZPE. For electrochemical test, when the temperature was lowered from 25 ℃ to -40 ℃, the capacitance retention of ZPE and ZSIPNE were 43% and 18%, and the ion conductivity at -40 ℃ were 28.5 mS cm-1 and 8.16 mS cm-1.PSBMA addition resulted in the increasing in the proportion of bound water in the polymer electrolyte and the formation of a semi-interpenetrating network structure, which maintained ion channels for ion mobility and increased intermolecular interactions at low temperature, resulting in improved capacitance, ion conductivity, and mechanical strength of ZSIPNE.
In the second part, carboxymethyl cellulose (CMC) adhesive was modified to CMC-SBMA to address the problem of CMC adhesive freezing at low temperature. ZSIPNE was used as the electrolyte for electrochemical analysis at -40 ℃. The capacitance retention rate increased significantly from 43% to 66%.
1. Samantara, A.K., et al., Historical background and present status of the supercapacitors. Materials development for active/passive components of a supercapacitor: background, present status and future perspective, 2018: p. 9-10.
2. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
3. Balakrishnan, A. and K. Subramanian, Nanostructured ceramic oxides for supercapacitor applications. 2014: CRC Press Boca Raton.
4. Shao, Y., et al., Design and mechanisms of asymmetric supercapacitors. Chemical reviews, 2018. 118(18): p. 9233-9280.
5. Conway, B.E., Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society, 1991. 138(6): p. 1539.
6. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
7. Samantara, A.K., et al., Components of supercapacitor. Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective, 2018: p. 11-39.
8. Serway, R.A. and J.W. Jewett, Physics for scientists and engineers. 2018: Cengage learning.
9. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
10. Wang, Z., et al., Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering: R: Reports, 2020. 139: p. 100520.
11. Min, H.J., et al., Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal, 2021. 412: p. 127500.
12. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and sustainable energy reviews, 2016. 58: p. 1189-1206.
13. Ji, S.M. and A. Kumar, Cellulose-derived nanostructures as sustainable biomass for supercapacitors: a review. Polymers, 2022. 14(1): p. 169.
14. Pal, B., et al., Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 2019. 1(10): p. 3807-3835.
15. Yu, A., V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. 2013: Taylor & Francis.
16. Suo, L., et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015. 350(6263): p. 938-943.
17. Lukatskaya, M.R., et al., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science, 2018. 11(10): p. 2876-2883.
18. Dou, Q., et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science, 2018. 11(11): p. 3212-3219.
19. Bu, X., et al., A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A, 2019. 7(13): p. 7541-7547.
20. Gao, Q., et al., Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy & Environmental Science, 2012. 5(11): p. 9611-9617.
21. Yu, M., et al., Boosting the energy density of carbon‐based aqueous supercapacitors by optimizing the surface charge. Angewandte Chemie, 2017. 129(20): p. 5546-5551.
22. Chun, S.-E., et al., Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature communications, 2015. 6(1): p. 7818.
23. Zhang, Q., et al., The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy & Environmental Science, 2011. 4(6): p. 2152-2159.
24. Brandon, E.J., et al., Extending the low temperature operational limit of double-layer capacitors. Journal of Power Sources, 2007. 170(1): p. 225-232.
25. Yang, C.-M., et al., Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. Journal of the American Chemical Society, 2007. 129(1): p. 20-21.
26. McDonough, J.K., et al., Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012. 50(9): p. 3298-3309.
27. Chmiola, J., et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. science, 2006. 313(5794): p. 1760-1763.
28. Hu, J., et al., Graphene with three-dimensional architecture for high performance supercapacitor. Carbon, 2014. 67: p. 221-229.
29. Fei, Z., et al., Revisiting ether-derivatized imidazolium-based ionic liquids. The Journal of Physical Chemistry B, 2007. 111(34): p. 10095-10108.
30. Watanabe, M., et al., Application of ionic liquids to energy storage and conversion materials and devices. Chemical reviews, 2017. 117(10): p. 7190-7239.
31. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica acta, 2006. 51(26): p. 5567-5580.
32. Armand, M., et al., Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009. 8(8): p. 621-629.
33. Choudhury, N., S. Sampath, and A. Shukla, Hydrogel—Polymer Electrolytes for Electrochemical Capacitors. ChemInform, 2010. 41(26): p. no-no.
34. Verma, M.L., M. Minakshi, and N.K. Singh, Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochimica Acta, 2014. 137: p. 497-503.
35. Zhai, S., et al., All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons, 2015. 2(6): p. 598-605.
36. Han, J., H. Li, and Q.-H. Yang, Compact energy storage enabled by graphenes: Challenges, strategies and progress. Materials Today, 2021. 51: p. 552-565.
37. Yan, J., et al., Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014. 4(4): p. 1300816.
38. Ghosh, S. and O. Inganäs, Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Advanced Materials, 1999. 11(14): p. 1214-1218.
39. Yu, Z., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015. 8(3): p. 702-730.
40. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 2011. 196(1): p. 1-12.
41. Meng, Q., et al., Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017. 36: p. 268-285.
42. Li, M., et al., Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019. 7(5): p. 4716-4723.
43. Liu, H., et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 2022. 32(26): p. 2113082.
44. Fang, B. and L. Binder, A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of power sources, 2006. 163(1): p. 616-622.
45. Couper, A.M., D. Pletcher, and F.C. Walsh, Electrode materials for electrosynthesis. Chemical reviews, 1990. 90(5): p. 837-865.
46. Hu, C.-C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters, 2006. 6(12): p. 2690-2695.
47. Wang, Q., et al., NiCo 2 O 4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013. 1(7): p. 2468-2473.
48. Qiu, K., et al., Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy, 2015. 11: p. 687-696.
49. Bao, L., J. Zang, and X. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano letters, 2011. 11(3): p. 1215-1220.
50. Wang, P.-H., et al., Crosslinked polymer ionic liquid/ionic liquid blends prepared by photopolymerization as solid-state electrolytes in supercapacitors. Nanomaterials, 2018. 8(4): p. 225.
51. Wan, C., Y. Jiao, and J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A, 2017. 5(8): p. 3819-3831.
52. Fan, H., et al., Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. Journal of Materials Chemistry, 2012. 22(6): p. 2774-2780.
53. Wu, Q., et al., Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS nano, 2010. 4(4): p. 1963-1970.
54. Meng, Y., et al., Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Advanced Materials, 2013. 25(48): p. 6985-6990.
55. Huang, L.-M., et al., Highly dispersed hydrous ruthenium oxide in poly (3, 4-ethylenedioxythiophene)-poly (styrene sulfonic acid) for supercapacitor electrode. Electrochimica acta, 2006. 52(3): p. 1058-1063.
56. Chang, Y.-S., et al., Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochimica Acta, 2020. 347: p. 136276.
57. Slater, A.G. and A.I. Cooper, Function-led design of new porous materials. Science, 2015. 348(6238): p. aaa8075.
58. Furukawa, H., et al., The chemistry and applications of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444.
59. Choi, K.M., et al., Supercapacitors of nanocrystalline metal–organic frameworks. ACS nano, 2014. 8(7): p. 7451-7457.
60. Lin, S., P.M. Usov, and A.J. Morris, The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 2018. 54(51): p. 6965-6974.
61. Verma, K.D., et al., Characteristics of current collector materials for supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials I: Characteristics. 2020, Springer. p. 327-340.
62. Myung, S.-T., Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9891-9911.
63. Zhu, P., et al., A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021. 485: p. 229321.
64. Muzaffar, A., et al., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and sustainable energy reviews, 2019. 101: p. 123-145.
65. Verma, K.D., et al., Characteristics of separator materials for supercapacitors. Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, 2020: p. 315-326.
66. Lee, H., et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014. 7(12): p. 3857-3886.
67. Tsay, K.-C., L. Zhang, and J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta, 2012. 60: p. 428-436.
68. Daraghmeh, A., et al., Impact of binder concentration and pressure on performance of symmetric CNFs based supercapacitors. Electrochimica Acta, 2017. 245: p. 531-538.
69. Xun, S., et al., Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. Journal of The Electrochemical Society, 2013. 160(6): p. A849.
70. Varzi, A., et al., Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes. Journal of Power Sources, 2016. 326: p. 672-679.
71. Song, B., et al., Effect of polymer binders on graphene-based free-standing electrodes for supercapacitors. Electrochimica Acta, 2018. 267: p. 213-221.
72. Wu, G., et al., Novel porous polymer electrolyte based on polyacrylonitrile. Materials chemistry and physics, 2007. 104(2-3): p. 284-287.
73. Sebesta, F., et al., Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes. 1995, Sandia National Labs.
74. Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochem. Methods, 2001. 2(482): p. 580-632.
75. NadjO, L., J. Savéant, and D. Tessier, Convolution potential sweep voltammetry: III. Effect of sweep rate cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974. 52(3): p. 403-412.
76. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2019. 2(1): p. 30-37.
77. Note, G.I.A., Basics of electrochemical impedance spectroscopy. Gamry Association Inc, 2006.
78. Lasia, A., Electrochemical impedance spectroscopy and its applications. 2002: Springer.
79. An, K.H., et al., Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes. Advanced functional materials, 2001. 11(5): p. 387-392.
80. Chang, B.-Y. and S.-M. Park, Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 2010. 3: p. 207-229.
81. Mei, B.-A., et al., Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C, 2018. 122(1): p. 194-206.
82. Huang, J., Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 2018. 281: p. 170-188.
83. Yang, I., et al., Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochimica Acta, 2017. 223: p. 21-30.
84. Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical methods, 2001. 2(482): p. 580-632.
85. Huang, J., et al., Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 2016. 309: p. 82-98.
86. Mattson, J.S. and H.B. Mark, Activated carbon: surface chemistry and adsorption from solution. 1971: M. Dekker.
87. Ohno, H., M. Yoshizawa-Fujita, and Y. Kohno, Design and properties of functional zwitterions derived from ionic liquids. Physical Chemistry Chemical Physics, 2018. 20(16): p. 10978-10991.
88. Ladd, J., et al., Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361.
89. Zhang, L., et al., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature biotechnology, 2013. 31(6): p. 553-556.
90. Lee, C.-J., et al., Ionic conductivity of polyelectrolyte hydrogels. ACS applied materials & interfaces, 2018. 10(6): p. 5845-5852.
91. Zhang, W., et al., Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. Journal of Membrane Science, 2018. 565: p. 293-302.
92. Cheng, Q., et al., Antifouling and antibacterial polymer-coated surfaces based on the combined effect of zwitterions and the natural borneol. ACS Applied Materials & Interfaces, 2021. 13(7): p. 9006-9014.
93. Zhang, W., et al., Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. Journal of colloid and interface science, 2018. 517: p. 155-165.
94. Wu, J., et al., Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir, 2012. 28(19): p. 7436-7441.
95. Willcock, H., et al., One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polymer Chemistry, 2014. 5(3): p. 1023-1030.
96. Tiyapiboonchaiya, C., et al., The zwitterion effect in high-conductivity polyelectrolyte materials. Nature materials, 2004. 3(1): p. 29-32.
97. Fumino, K., et al., Equilibrium of Contact and Solvent‐Separated Ion Pairs in Mixtures of Protic Ionic Liquids and Molecular Solvents Controlled by Polarity. Angewandte Chemie International Edition, 2013. 52(47): p. 12439-12442.
98. Chang, Y., et al., Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS applied materials & interfaces, 2011. 3(4): p. 1228-1237.
99. Peng, X., et al., A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications, 2016. 7(1): p. 11782.
100. Ge, K. and G. Liu, Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte. Chemical Communications, 2019. 55(50): p. 7167-7170.
101. Yang, C., et al., Flexible aqueous Li‐ion battery with high energy and power densities. Advanced materials, 2017. 29(44): p. 1701972.
102. Tamai, Y., H. Tanaka, and K. Nakanishi, Molecular dynamics study of polymer− water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules, 1996. 29(21): p. 6750-6760.
103. Capitani, D., et al., Water in hydrogels. An NMR study of water/polymer interactions in weakly cross-linked chitosan networks. Macromolecules, 2001. 34(12): p. 4136-4144.
104. Bag, M.A. and L.M. Valenzuela, Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review. International journal of molecular sciences, 2017. 18(8): p. 1422.
105. Brini, E., et al., How water’s properties are encoded in its molecular structure and energies. Chemical reviews, 2017. 117(19): p. 12385-12414.
106. Menczel, J.D. and R.B. Prime, Thermal analysis of polymers: fundamentals and applications. 2009: John Wiley & Sons.
107. Menard, K.P. and N.R. Menard, Dynamic mechanical analysis. 2020: CRC press.
108. Owens, C.E., et al., On Oreology, the fracture and flow of “milk's favorite cookie®”. Physics of Fluids, 2022. 34(4): p. 043107.
109. Popovics, S., A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research, 1973. 3(5): p. 583-599.
110. Qin, H. and M.J. Panzer, Chemically cross‐linked poly (2‐hydroxyethyl methacrylate)‐supported deep eutectic solvent gel electrolytes for eco‐friendly supercapacitors. ChemElectroChem, 2017. 4(10): p. 2556-2562.
111. Wang, P.-H., et al., Zwitterionic polymer coupled with high concentrated electrolytes to achieve high ionic conductivity and wide electrochemical window for supreme specific energy aqueous supercapacitors. Journal of Energy Storage, 2021. 42: p. 103060.
112. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2017: Cengage learning.
113. Li, W.-C., et al., Hydrogel electrolytes with immobilized pair ions via one-pot copolymerization for flexible supercapacitors. Journal of Power Sources, 2023. 558: p. 232598.
114. Wang, P.-H., et al., Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4 V aqueous supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2021. 126: p. 58-66.
115. Fong, K.D., et al., Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes. ACS Energy Letters, 2017. 2(9): p. 2014-2020.
116. Arof, A., et al., A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 2014. 16(5): p. 1856-1867.
117. Wang, Z., Y. Cong, and J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of materials chemistry B, 2020. 8(16): p. 3437-3459.
118. Charaya, H., et al., Specific ion effects in polyampholyte hydrogels dialyzed in aqueous electrolytic solutions. Langmuir, 2018. 35(5): p. 1526-1533.
119. Guiseppi-Elie, A., Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials, 2010. 31(10): p. 2701-2716.
120. Hu, Z. and G. Chen, Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Advanced materials, 2014. 26(34): p. 5950-5956.
121. Liu, Y.-w., et al., Transparent and tough poly (2-hydroxyethyl methacrylate) hydrogels prepared in water/IL mixtures. New Journal of Chemistry, 2020. 44(10): p. 4092-4098.
122. Cantor, S., DSC study of melting and solidification of salt hydrates. Thermochimica Acta, 1979. 33: p. 69-86.
123. Vachon, C., et al., Microphase separation in amorphous polyethers complexed with lithium perchlorate, sodium perchlorate and sodium iodide. Macromolecules, 1993. 26(15): p. 4023-4031.
124. Yang, B., et al., Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage. Journal of Power Sources, 2021. 492: p. 229666.
125. Zhou, Y., et al., Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2016. 314: p. 39-48.
126. Li, W.-C., et al., Superior performances of supercapacitors and lithium-ion batteries with carboxymethyl cellulose bearing zwitterions as binders. Journal of the Taiwan Institute of Chemical Engineers, 2022. 133: p. 104263.
127. Tanimura, A., A. Kovalenko, and F. Hirata, Molecular theory of an electrochemical double layer in a nanoporous carbon supercapacitor. Chemical physics letters, 2003. 378(5-6): p. 638-646.