簡易檢索 / 詳目顯示

研究生: 何彥志
Ho, Yen-Chih
論文名稱: PARP1招募DNA translocases協同抑制DNA複製的進行並調控DNA受損修復
PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
中文關鍵詞: 反向複製叉PARP1HLTFSHPRHZRANB3SMARCAL1
外文關鍵詞: Fork reversal, PARP1, HLTF, SHPRH, ZRANB3, SMARCAL1
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當基因體複製過程遭遇複製壓力產生損傷時,細胞會啟動保護機制促使複製叉停滯並形成反向複製叉的結構,以抑制基因體複製的進行,避免損害持續擴大造成結構瓦解;目前已知PARP1會結合到停滯複製叉抑制DNA複製的進行,然而PARP1並不具helicase功能,有關PARP1抑制DNA複製的調控機制尚待進一步釐清。本篇研究中,我們發現PARP1除了參與調控base/nucleotide excision repair(BER/NER)本身也具有損傷感應蛋白的角色,會和DNA translocases (HLTF、SHPRH、ZRANB3及SMARCAL1)以非依賴PAR活性及DNA的方式形成聚合體,於基因體受損時結合到停滯複製叉,藉由DNA translocases將停滯的複製叉轉換成較穩定的反向複製叉結構,以利DNA複製的重新啟動和DNA修復;由於PAR moiety也具有binding motif的功能,能招募更多蛋白質到停滯的複製叉上,我們認為PARP1/DNA translocase聚合體和與PAR相互作用的蛋白質之間的多價相互作用(multivalent interactions)有助於將PARP1/DNA translocase聚合體招募到停滯的複製叉,這個現象與liquid-liquid phase separation理論相互一致,皆為細胞內蛋白質聚集在特定位點的機制。我們進一步發現在複製壓力下SHPRH也會參與調控抑制基因體複製的進行,表示SHPRH本身即為translocase抑或會協助DNA進行translocation。總結,當細胞遭受複製壓力時,會經由PARP1於偵測到受損後將DNA translocase一同帶到受損複製叉上,促使反向複製叉生成避免損害擴大,並啟動DNA受損修復機制。

    Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. In the present study, we found PARP1 is not only involved in base/nucleotide-excision repair (BER/NER) but also functions as a sensor of replication stress. PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1 form a complex, and these protein-protein interactions are not mediated through DNA and poly(ADP-ribose) (PAR) activity. In response to replication stress, this complex will bind to the damaged site and promote the formation of reversed fork, and this process depends on PAR activity of PARP1. Since the PAR moiety also functions as binding motif which is able to recruit more proteins to stalled forks, our results suggest that multivalent interactions among PARP1, DNA translocases, and PAR-interacting proteins facilitates the recruitment of PARP1/DNA translocases complexes to stalled forks. Our results are consistent with liquid-liquid phase separation theory which is a widespread mechanism underlying the spatiotemporal protein recruitment process. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Our results suggest that PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.

    中文摘要 I Abstract II 誌謝 III Content IV Chapter 1. Introduction 1 1.Replication stress, DNA damage response, genomic instability 1 2.Fork reversal 2 3.The function of PARP1 4 4.The function of translocases 7 A.HLTF and SHPRH 7 B.SMARCAL1 9 C.ZRANB3 10 5.Aims of this study 12 Chapter 2. Materials and Methods 13 1.Cell culture 13 2.The generation of gene-knockout T24 cells 13 3.RNA interference 14 4.SIRF assay 14 5.PLA assay 15 6.Western blotting 15 7.Plasmid construction 16 8.Generation of PARP1-GFP and PARP1-K893I-GFP expressing cell lines 17 9.Co-immunoprecipitation (CoIP) assay 17 10.Sister chromatid exchange (SCE) 18 11.EdU click confocal 19 12.Immunofluorescence microscopy 19 13.DNA fiber analysis 20 Chapter 3. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair 21 1.Results 21 A.PARP1 deletion reduces DNA translocase levels at damaged forks 21 B.PAR activity is crucial for the recruitment of DNA translocases to damaged forks 23 C.PARP1 associates with DNA translocases in vivo 23 D.PARP1 interacts with each DNA translocase through multiple domains 25 E.DNA damage treatment enhances the recruitment of the PARP1/DNA translocase complex to stalled forks 25 F.HLTF and SHPRH facilitate the loading of ZRANB3 to damaged replication forks 26 G.DNA translocases restrain DNA replication upon HU-induced replication stress 26 H.High levels of DNA damage activate intra-S phase checkpoint 27 I.The levels of DNA damage severity affect the outcome of fork progression 28 J.PARP1-KO, HLTF-KO, and SHPRH-depleted cells have high levels of CHK1/CHK2 phosphorylation upon 0.01% MMS treatment 29 K.PARP1- and DNA translocase-depleted cells are defective in DNA repair, resulting in higher levels of DSBs 29 2.Discussion and conclusion 30 3.Figures 37 4.Supplementary Figure 76 5.Tables 77 Chapter 4. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathway 79 1.Abstract 79 2.Results 80 A.Chronic treatment with cisplatin induces the expression of TIP60 to confer chemoresistance 80 B.Depletion of TIP60 sensitizes HONE6 cells to cisplatin 81 C.Depletion of TIP60 results in more frequent stalled forks and elevated DSBs after treatment with cisplatin 82 D.TIP60-deficient HONE6 cells show the decreased frequency of sister chromatid exchange (SCE) 83 E.The expressions of several genes in the HR, FA, and PRR pathways are reduced in HONE6-shTIP60 cells 84 F.TIP60 binds to the promoter of BRCA1 and FANCD2 85 G.Histone H4 is acetylated at the TSS sites of BRCA1 and FANCD2 86 3.Discussion and conclusion 87 4.Figures 91 Reference 104

    1. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 11(3):208-219. doi:10.1038/nrm2852 (2010).
    2. Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 11(10):683-687. doi:10.1038/nrm2974 (2010).
    3. Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev. 14(1):11-16. doi:10.1016/j.gde.2003.12.003 (2004).
    4. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 58(5):235-263. doi:10.1002/em.22087 (2017).
    5. Khanna A. DNA damage in cancer therapeutics: a boon or a curse?. Cancer Res. 75(11):2133-2138. doi:10.1158/0008-5472.CAN-14-3247 (2015).
    6. Bai P. Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Mol Cell. 58(6):947-958. doi:10.1016/j.molcel.2015.01.034 (2015).
    7. Dip R, Camenisch U, Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst). 3(11):1409-1423. doi:10.1016/j.dnarep.2004.05.005 (2004).
    8. Aparicio T, Baer R, Gautier J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst). 19:169-175. doi:10.1016/j.dnarep.2014.03.014 (2014).
    9. Cejka P. DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination. J Biol Chem. 290(38):22931-22938. doi:10.1074/jbc.R115.675942 (2015).
    10. Srivastava M, Raghavan SC. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol. 22(1):17-29. doi:10.1016/j.chembiol.2014.11.013 (2015).
    11. Higgins NP, Kato K, Strauss B. A model for replication repair in mammalian cells. J Mol Biol. 101(3):417-425. doi:10.1016/0022-2836(76)90156-x (1976).
    12. Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol. 16(4):207-220. doi:10.1038/nrm3935 (2015).
    13. Branzei D. Ubiquitin family modifications and template switching. FEBS Lett. 585(18):2810-2817. doi:10.1016/j.febslet.2011.04.053 (2011).
    14. Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev. 73(1):134-154. doi:10.1128/MMBR.00034-08 (2009).
    15. Branzei D, Psakhye I. DNA damage tolerance. Curr Opin Cell Biol. 40:137-144. doi:10.1016/j.ceb.2016.03.015 (2016).
    16. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 5(7):675-679. doi:10.1038/ncb1004 (2003).
    17. Bassing CH, Chua KF, Sekiguchi J, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A. 99(12):8173-8178. doi:10.1073/pnas.122228699 (2002).
    18. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science. 296(5569):922-927. doi:10.1126/science.1069398 (2002).
    19. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 421(6926):961-966. doi:10.1038/nature01446 (2003).
    20. Fernandez-Capetillo O, Chen HT, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol. 4(12):993-997. doi:10.1038/ncb884 (2002).
    21. Chang DJ, Cimprich KA. DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol. 5(2):82-90. doi:10.1038/nchembio.139 (2009).
    22. Friedberg EC. Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol. 6(12):943-953. doi:10.1038/nrm1781 (2005).
    23. Lee KY, Myung K. PCNA modifications for regulation of post-replication repair pathways. Mol Cells. 26(1):5-11. (2008).
    24. Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem. 74:317-353. doi:10.1146/annurev.biochem.74.082803.133250 (2005).
    25. Broomfield S, Hryciw T, Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 486(3):167-184. doi:10.1016/s0921-8777(01)00091-x (2001).
    26. Unk I, Hajdú I, Blastyák A, Haracska L. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst). 9(3):257-267. doi:10.1016/j.dnarep.2009.12.013 (2010).
    27. Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell. 42(2):237-249. doi:10.1016/j.molcel.2011.02.026 (2011).
    28. Chang DJ, Cimprich KA. DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol. 5(2):82-90. doi:10.1038/nchembio.139 (2009).
    29. Andersen PL, Xu F, Xiao W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18(1):162-173. doi:10.1038/cr.2007.114 (2008).
    30. McCulloch SD, Kunk el TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18(1):148-161. doi:10.1038/cr.2008.4 (2008).
    31. Yang W, Woodgate R. What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci U S A. 104(40):15591-15598. doi:10.1073/pnas.0704219104 (2007).
    32. Friedberg EC, Lehmann AR, Fuchs RP. Trading places: how do DNA polymerases switch during translesion DNA synthesis? [published correction appears in Mol Cell. 2005 Jul 1;19(1):143]. Mol Cell. 18(5):499-505. doi:10.1016/j.molcel.2005.03.032 (2005).
    33. Papouli E, Chen S, Davies AA, et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell. 19(1):123-133. doi:10.1016/j.molcel.2005.06.001 (2005).
    34. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 436(7049):428-433. doi:10.1038/nature03665 (2005).
    35. Chiu RK, Brun J, Ramaekers C, et al. Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet. 2(7):e116. doi:10.1371/journal.pgen.0020116 (2006).
    36. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419(6903):135-141. doi:10.1038/nature00991 (2002).
    37. Unk I, Hajdú I, Fátyol K, et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci U S A. 105(10):3768-3773. doi:10.1073/pnas.0800563105 (2008).
    38. Unk I, Hajdú I, Fátyol K, et al. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci U S A. 103(48):18107-18112. doi:10.1073/pnas.0608595103 (2006).
    39. Motegi A, Sood R, Moinova H, Markowitz SD, Liu PP, Myung K. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J Cell Biol. 175(5):703-708. doi:10.1083/jcb.200606145 (2006).
    40. Motegi A, Liaw HJ, Lee KY, et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 105(34):12411-12416. doi:10.1073/pnas.0805685105 (2008).
    41. Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 25(6):446-453. doi:10.1038/s41594-018-0075-z (2018).
    42. Bétous R, Couch FB, Mason AC, Eichman BF, Manosas M, Cortez D. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep. 3(6):1958-1969. doi:10.1016/j.celrep.2013.05.002 (2013).
    43. Ciccia A, Nimonkar AV, Hu Y, et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell. 47(3):396-409. doi:10.1016/j.molcel.2012.05.024 (2012).
    44. Kile AC, Chavez DA, Bacal J, et al. HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal. Mol Cell. 58(6):1090-1100. doi:10.1016/j.molcel.2015.05.013 (2015).
    45. Bétous R, Mason AC, Rambo RP, et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26(2):151-162. doi:10.1101/gad.178459.111 (2012).
    46. Bansbach CE, Bétous R, Lovejoy CA, Glick GG, Cortez D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23(20):2405-2414. doi:10.1101/gad.1839909 (2009).
    47. Vujanovic M, Krietsch J, Raso MC, et al. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Mol Cell. 67(5):882-890.e5. doi:10.1016/j.molcel.2017.08.010 (2017).
    48. Taglialatela A, Alvarez S, Leuzzi G, et al. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell. 68(2):414-430.e8. doi:10.1016/j.molcel.2017.09.036 (2017).
    49. Bai G, Kermi C, Stoy H, et al. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Mol Cell. 78(6):1237-1251.e7. doi:10.1016/j.molcel.2020.04.031 (2020).
    50. Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol. 23(2):103-109. doi:10.1038/nsmb.3163 (2016).
    51. Blastyák A, Hajdú I, Unk I, Haracska L. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol. 30(3):684-693. doi:10.1128/MCB.00863-09 (2010).
    52. Mijic S, Zellweger R, Chappidi N, et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun. 8(1):859. Published 2017 Oct 16. doi:10.1038/s41467-017-01164-5 (2017).
    53. Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 168(4):644-656. doi:10.1016/j.cell.2017.01.002 (2017).
    54. Amé JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays. 26(8):882-893. doi:10.1002/bies.20085 (2004).
    55. Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 13:3046-3082. Published 2008 Jan 1. doi:10.2741/2909 (2008).
    56. Haince JF, McDonald D, Rodrigue A, et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem. 283(2):1197-1208. doi:10.1074/jbc.M706734200 (2008).
    57. Buki KG, Kun E. Polypeptide domains of ADP-ribosyltransferase obtained by digestion with plasmin. Biochemistry. 27(16):5990-5995. doi:10.1021/bi00416a024 (1988).
    58. Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J Biol Chem. 259(8):4770-4776. (1984).
    59. Langelier MF, Planck JL, Roy S, Pascal JM. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 336(6082):728-732. doi:10.1126/science.1216338 (2012).
    60. Nishikimi M, Ogasawara K, Kameshita I, Taniguchi T, Shizuta Y. Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain. J Biol Chem. 257(11):6102-6105. (1982).
    61. Mangerich A, Bürkle A. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev. 2012:321653. doi:10.1155/2012/321653 (2012).
    62. Gagné JP, Isabelle M, Lo KS, et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36(22):6959-6976. doi:10.1093/nar/gkn771 (2008).
    63. Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med. 34(6):1138-1152. doi:10.1016/j.mam.2013.02.001 (2013).
    64. D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 342 ( Pt 2)(Pt 2):249-268. (1999).
    65. Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?. Microbiol Mol Biol Rev. 70(3):789-829. doi:10.1128/MMBR.00040-05 (2006).
    66. Henning SM, Swendseid ME, Coulson WF. Male rats fed methyl- and folate-deficient diets with or without niacin develop hepatic carcinomas associated with decreased tissue NAD concentrations and altered poly(ADP-ribose) polymerase activity. J Nutr. 127(1):30-36. doi:10.1093/jn/127.1.30 (1997).
    67. Khodyreva SN, Prasad R, Ilina ES, et al. Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci U S A. 107(51):22090-22095. doi:10.1073/pnas.1009182107 (2010).
    68. Satoh MS, Poirier GG, Lindahl T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry. 33(23):7099-7106. doi:10.1021/bi00189a012 (1994).
    69. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 12(2):104-120. Published 2012 Jan 12. doi:10.1038/nrc3185 (2012).
    70. Dantzer F, de La Rubia G, Ménissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry. 39(25):7559-7569. doi:10.1021/bi0003442 (2000).
    71. Ju BG, Solum D, Song EJ, et al. Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway [published correction appears in Cell. 2006 Dec 16;127(6):1283]. Cell. 119(6):815-829. doi:10.1016/j.cell.2004.11.017 (2004).
    72. Lieber MR, Wilson TE. SnapShot: Nonhomologous DNA end joining (NHEJ). Cell. 142(3):496-496.e1. doi:10.1016/j.cell.2010.07.035 (2010).
    73. Ruscetti T, Lehnert BE, Halbrook J, et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem. 273(23):14461-14467. doi:10.1074/jbc.273.23.14461 (1998).
    74. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18(10):610-621. doi:10.1038/nrm.2017.53 (2017).
    75. Rybanska I, Ishaq O, Chou J, et al. PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis. Oncogene. 32(14):1761-1771. doi:10.1038/onc.2012.199 (2013).
    76. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 77:229-257. doi:10.1146/annurev.biochem.77.061306.125255 (2008).
    77. Bryant HE, Petermann E, Schultz N, et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28(17):2601-2615. doi:10.1038/emboj.2009.206 (2009).
    78. Shiu JL, Wu CK, Chang SB, et al. The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis. 9(12):104. Published 2020 Dec 7. doi:10.1038/s41389-020-00289-5 (2020).
    79. Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell. 42(2):237-249. doi:10.1016/j.molcel.2011.02.026 (2011).
    80. Hochstrasser M. Lingering mysteries of ubiquitin-chain assembly. Cell. 124(1):27-34. doi:10.1016/j.cell.2005.12.025 (2006).
    81. Stelter P, Ulrich HD. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425(6954):188-191. doi:10.1038/nature01965 (2003).
    82. Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23(19):3886-3896. doi:10.1038/sj.emboj.7600383 (2004).
    83. Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 14(4):491-500. doi:10.1016/s1097-2765(04)00259-x (2004).
    84. Garg P, Burgers PM. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci U S A. 102(51):18361-18366. doi:10.1073/pnas.0505949102 (2005).
    85. Sood R, Makalowska I, Galdzicki M, et al. Cloning and characterization of a novel gene, SHPRH, encoding a conserved putative protein with SNF2/helicase and PHD-finger domains from the 6q24 region. Genomics. 82(2):153-161. doi:10.1016/s0888-7543(03)00121-6 (2003).
    86. Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23(14):2715-2723. doi:10.1093/nar/23.14.2715 (1995).
    87. Muchardt C, Yaniv M. When the SWI/SNF complex remodels...the cell cycle. Oncogene. 20(24):3067-3075. doi:10.1038/sj.onc.1204331 (2001).
    88. Flaus A, Martin DM, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34(10):2887-2905. Published 2006 May 31. doi:10.1093/nar/gkl295 (2006).
    89. Thomä NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol. 12(4):350-356. doi:10.1038/nsmb919 (2005).
    90. Dusek CO, Dash RC, McPherson KS, et al. DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats [published online ahead of print, 2022 May 24]. Biochemistry. 10.1021/acs.biochem.2c00027. doi:10.1021/acs.biochem.2c00027 (2022).
    91. Yusufzai T, Kong X, Yokomori K, Kadonaga JT. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 23(20):2400-2404. doi:10.1101/gad.1831509 (2009).
    92. Ghosal G, Yuan J, Chen J. The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1. EMBO Rep. 12(6):574-580. doi:10.1038/embor.2011.74 (2011).
    93. Coleman MA, Eisen JA, Mohrenweiser HW. Cloning and characterization of HARP/SMARCAL1: a prokaryotic HepA-related SNF2 helicase protein from human and mouse. Genomics. 65(3):274-282. doi:10.1006/geno.2000.6174 (2000).
    94. Boerkoel CF, Takashima H, John J, et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet. 30(2):215-220. doi:10.1038/ng821 (2002).
    95. Yusufzai T, Kadonaga JT. HARP is an ATP-driven annealing helicase. Science. 322(5902):748-750. doi:10.1126/science.1161233 (2008).
    96. Santangelo L, Gigante M, Netti GS, et al. A novel SMARCAL1 mutation associated with a mild phenotype of Schimke immuno-osseous dysplasia (SIOD). BMC Nephrol. 15:41. Published 2014 Mar 3. doi:10.1186/1471-2369-15-41 (2014).
    97. Schimke RN, Horton WA, King CR. Chondroitin-6-sulphaturia, defective cellular immunity, and nephrotic syndrome. Lancet. 2(7733):1088-1089. doi:10.1016/s0140-6736(71)90400-4 (1971).
    98. Spranger J, Hinkel GK, Stöss H, Thoenes W, Wargowski D, Zepp F. Schimke immuno-osseous dysplasia: a newly recognized multisystem disease. J Pediatr. 119(1 Pt 1):64-72. doi:10.1016/s0022-3476(05)81040-6 (1991).
    99. Lücke T, Franke D, Clewing JM, et al. Schimke versus non-Schimke chronic kidney disease: an anthropometric approach. Pediatrics. 118(2):e400-e407. doi:10.1542/peds.2005-2614 (2006).
    100. Boerkoel CF, O'Neill S, André JL, et al. Manifestations and treatment of Schimke immuno-osseous dysplasia: 14 new cases and a review of the literature. Eur J Pediatr. 159(1-2):1-7. doi:10.1007/s004310050001 (2000).
    101. Weston R, Peeters H, Ahel D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26(14):1558-1572. doi:10.1101/gad.193516.112 (2012).
    102. Vujanovic M, Krietsch J, Raso MC, et al. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Mol Cell. 67(5):882-890.e5.doi:10.1016/j.molcel. 2017. 08.010 (2017).
    103. Yuan J, Ghosal G, Chen J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol Cell. 47(3):410-421. doi:10.1016/j.molcel.2012.05.025 (2012).
    104. Sebesta M, Cooper CDO, Ariza A, Carnie CJ, Ahel D. Structural insights into the function of ZRANB3 in replication stress response. Nat Commun. 8:15847. Published 2017 Jun 16. doi:10.1038/ncomms15847 (2017).
    105. Zellweger R, Dalcher D, Mutreja K, et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol. 208(5):563-579. doi:10.1083/jcb.201406099 (2015).
    106. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 559(7713):279-284. doi:10.1038/s41586-018-0261-5 (2018).
    107. Berti M, Ray Chaudhuri A, Thangavel S, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 20(3):347-354. doi:10.1038/nsmb.2501 (2013).
    108. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol. 183(7):1203-1212. doi:10.1083/jcb.200806068 (2008).
    109. Roy S, Luzwick JW, Schlacher K. SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks [published correction appears in J Cell Biol. 2018 Mar 23;:]. J Cell Biol. 217(4):1521-1536. doi:10.1083/jcb.201709121 (2018).
    110. Kim H, Jacobson MK, Rolli V, et al. Photoaffinity labelling of human poly(ADP-ribose) polymerase catalytic domain. Biochem J. 322 ( Pt 2)(Pt 2):469-475. doi:10.1042/bj3220469 (1997).
    111. Simonin F, Poch O, Delarue M, de Murcia G. Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem. 268(12):8529-8535. (1993).
    112. Achar YJ, Balogh D, Neculai D, et al. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res. 43(21):10277-10291. doi:10.1093/nar/gkv896 (2015).
    113. Ciccia A, Nimonkar AV, Hu Y, et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell. 47(3):396-409. doi:10.1016/j.molcel.2012.05.024 (2012).
    114. Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol. 19(12):1580-1594. doi:10.1021/tx060164e (2006).
    115. Quinet, A., Lemaçon, D., & Vindigni, A. Replication Fork Reversal: Players and Guardians. Molecular cell, 68(5), 830–833. (2017).
    116. Liu, W., Krishnamoorthy, A., Zhao, R., & Cortez, D. Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. Science advances, 6(46), eabc3598. (2020).
    117. Ko, H. L., & Ren, E. C. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules, 2(4), 524–548. (2012).
    118. Su, W. P., Hsu, S. H., Wu, C. K., Chang, S. B., Lin, Y. J., Yang, W. B., Hung, J. J., Chiu, W. T., Tzeng, S. F., Tseng, Y. L., Chang, J. Y., Su, W. C., & Liaw, H. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget, 5(15), 6323–6337. (2014).
    119. Chang, K. Y., Tsai, S. Y., Wu, C. M., Yen, C. J., Chuang, B. F., & Chang, J. Y. Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research, 17(22), 7116–7126. (2011).
    120. Glaser, R., Zhang, H. Y., Yao, K. T., Zhu, H. C., Wang, F. X., Li, G. Y., Wen, D. S., & Li, Y. P. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9524–9528. (1989).
    121. Sapountzi, V., Logan, I. R., & Robson, C. N. Cellular functions of TIP60. The international journal of biochemistry & cell biology, 38(9), 1496–1509. (2006).
    122. Miyamoto, N., Izumi, H., Noguchi, T., Nakajima, Y., Ohmiya, Y., Shiota, M., Kidani, A., Tawara, A., & Kohno, K. Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance. The Journal of biological chemistry, 283(26), 18218–18226. (2008).
    123. Van Den Broeck, A., Nissou, D., Brambilla, E., Eymin, B., & Gazzeri, S. Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis, 33(2), 320–325. (2012).
    124. Hejna, J., Holtorf, M., Hines, J., Mathewson, L., Hemphill, A., Al-Dhalimy, M., Olson, S. B., & Moses, R. E. Tip60 is required for DNA interstrand cross-link repair in the Fanconi anemia pathway. The Journal of biological chemistry, 283(15), 9844–9851. (2008).
    125. Renaud, E., Barascu, A., & Rosselli, F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic acids research, 44(2), 648–656. (2016).
    126. Squatrito, M., Gorrini, C., & Amati, B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends in cell biology, 16(9), 433–442. (2006).
    127. Kusch, T., Florens, L., Macdonald, W. H., Swanson, S. K., Glaser, R. L., Yates, J. R., 3rd, Abmayr, S. M., Washburn, M. P., & Workman, J. L. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science (New York, N.Y.), 306(5704), 2084–2087. (2004).
    128. Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q., & Herceg, Z. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature cell biology, 8(1), 91–99. (2006).
    129. Ikura, T., Tashiro, S., Kakino, A., Shima, H., Jacob, N., Amunugama, R., Yoder, K., Izumi, S., Kuraoka, I., Tanaka, K., Kimura, H., Ikura, M., Nishikubo, S., Ito, T., Muto, A., Miyagawa, K., Takeda, S., Fishel, R., Igarashi, K., & Kamiya, K. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Molecular and cellular biology, 27(20), 7028–7040. (2007).
    130. Bararia, D., Trivedi, A. K., Zada, A. A., Greif, P. A., Mulaw, M. A., Christopeit, M., Hiddemann, W., Bohlander, S. K., & Behre, G. Proteomic identification of the MYST domain histone acetyltransferase TIP60 (HTATIP) as a co-activator of the myeloid transcription factor C/EBPalpha. Leukemia, 22(4), 800–807. (2008).
    131. Perez-Perri, J. I., Dengler, V. L., Audetat, K. A., Pandey, A., Bonner, E. A., Urh, M., Mendez, J., Daniels, D. L., Wappner, P., Galbraith, M. D., & Espinosa, J. M. The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell reports, 16(1), 37–47. (2016).
    132. Taubert, S., Gorrini, C., Frank, S. R., Parisi, T., Fuchs, M., Chan, H. M., Livingston, D. M., & Amati, B. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Molecular and cellular biology, 24(10), 4546–4556. (2004).
    133. Patel, J. H., Du, Y., Ard, P. G., Phillips, C., Carella, B., Chen, C. J., Rakowski, C., Chatterjee, C., Lieberman, P. M., Lane, W. S., Blobel, G. A., & McMahon, S. B. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Molecular and cellular biology, 24(24), 10826–10834. (2004).
    134. Frank, S. R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H. M., Livingston, D. M., & Amati, B. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO reports, 4(6), 575–580. (2003).
    135. Legube, G., Linares, L. K., Tyteca, S., Caron, C., Scheffner, M., Chevillard-Briet, M., & Trouche, D. Role of the histone acetyl transferase Tip60 in the p53 pathway. The Journal of biological chemistry, 279(43), 44825–44833. (2004).
    136. Legube, G., Linares, L. K., Lemercier, C., Scheffner, M., Khochbin, S., & Trouche, D. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. The EMBO journal, 21(7), 1704–1712. (2002).
    137. Cao, X., & Südhof, T. C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science (New York, N.Y.), 293(5527), 115–120. (2001).
    138. Sykes, S. M., Mellert, H. S., Holbert, M. A., Li, K., Marmorstein, R., Lane, W. S., & McMahon, S. B. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Molecular cell, 24(6), 841–851. (2006).
    139. Tang, Y., Luo, J., Zhang, W., & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Molecular cell, 24(6), 827–839. (2006).
    140. Lee, M. S., Seo, J., Choi, D. Y., Lee, E. W., Ko, A., Ha, N. C., Yoon, J. B., Lee, H. W., Kim, K. P., & Song, J. Stabilization of p21 (Cip1/WAF1) following Tip60-dependent acetylation is required for p21-mediated DNA damage response. Cell death and differentiation, 20(4), 620–629. (2013).
    141. Sun, Y., Jiang, X., Chen, S., Fernandes, N., & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13182–13187. (2005).
    142. Kaidi, A., & Jackson, S. P. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature, 498(7452), 70–74. (2013).
    143. Shen, D. W., Pouliot, L. M., Hall, M. D., & Gottesman, M. M. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological reviews, 64(3), 706–721. (2012).
    144. Wilson, D. M., 3rd, & Thompson, L. H. Molecular mechanisms of sister-chromatid exchange. Mutation research, 616(1-2), 11–23. (2007).
    145. Saleh-Gohari, N., Bryant, H. E., Schultz, N., Parker, K. M., Cassel, T. N., & Helleday, T. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Molecular and cellular biology, 25(16), 7158–7169. (2005).
    146. Hoch, N. C., Hanzlikova, H., Rulten, S. L., Tétreault, M., Komulainen, E., Ju, L., Hornyak, P., Zeng, Z., Gittens, W., Rey, S. A., Staras, K., Mancini, G. M., McKinnon, P. J., Wang, Z. Q., Wagner, J. D., Care4Rare Canada Consortium, Yoon, G., & Caldecott, K. W. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature, 541(7635), 87–91. (2017).
    147. Sonoda, E., Sasaki, M. S., Morrison, C., Yamaguchi-Iwai, Y., Takata, M., & Takeda, S. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Molecular and cellular biology, 19(7), 5166–5169. (1999).
    148. Gravells, P., Hoh, L., Solovieva, S., Patil, A., Dudziec, E., Rennie, I. G., Sisley, K., & Bryant, H. E. Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene, 32(46), 5338–5346. (2013).
    149. Smiraldo, P. G., Gruver, A. M., Osborn, J. C., & Pittman, D. L. Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer research, 65(6), 2089–2096. (2005).
    150. Dronkert, M. L., Beverloo, H. B., Johnson, R. D., Hoeijmakers, J. H., Jasin, M., & Kanaar, R. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Molecular and cellular biology, 20(9), 3147–3156. (2000).
    151. Liaw, H., Lee, D., & Myung, K. DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PloS one, 6(6), e21424. (2011).
    152. Kobayashi, J., Kato, A., Ota, Y., Ohba, R., & Komatsu, K. Bisbenzamidine derivative, pentamidine represses DNA damage response through inhibition of histone H2A acetylation. Molecular cancer, 9, 34. (2010).
    153. Ghizzoni, M., Wu, J., Gao, T., Haisma, H. J., Dekker, F. J., & George Zheng, Y. 6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site. European journal of medicinal chemistry, 47(1), 337–344. (2012).
    154. Coffey, K., Blackburn, T. J., Cook, S., Golding, B. T., Griffin, R. J., Hardcastle, I. R., Hewitt, L., Huberman, K., McNeill, H. V., Newell, D. R., Roche, C., Ryan-Munden, C. A., Watson, A., & Robson, C. N. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PloS one, 7(10), e45539. (2012).
    155. Gao, C., Bourke, E., Scobie, M., Famme, M. A., Koolmeister, T., Helleday, T., Eriksson, L. A., Lowndes, N. F., & Brown, J. A. Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Scientific reports, 4, 5372. (2014).
    156. Sun, Y., Jiang, X., Chen, S., & Price, B. D. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS letters, 580(18), 4353–4356. (2006).
    157. Gupte, R., Liu, Z., & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes & development, 31(2), 101–126. (2017).
    158. Ahel, I., Ahel, D., Matsusaka, T., Clark, A. J., Pines, J., Boulton, S. J., & West, S. C. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature, 451(7174), 81–85. (2008).
    159. Ahel, D., Horejsí, Z., Wiechens, N., Polo, S. E., Garcia-Wilson, E., Ahel, I., Flynn, H., Skehel, M., West, S. C., Jackson, S. P., Owen-Hughes, T., & Boulton, S. J. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science (New York, N.Y.), 325(5945), 1240–1243. (2009).
    160. Huttlin, E. L., Bruckner, R. J., Navarrete-Perea, J., Cannon, J. R., Baltier, K., Gebreab, F., Gygi, M. P., Thornock, A., Zarraga, G., Tam, S., Szpyt, J., Gassaway, B. M., Panov, A., Parzen, H., Fu, S., Golbazi, A., Maenpaa, E., Stricker, K., Guha Thakurta, S., Zhang, T., … Gygi, S. P. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell, 184(11), 3022–3040.e28. (2021).
    161. Korzhnev, D. M., Neculai, D., Dhe-Paganon, S., Arrowsmith, C. H., & Bezsonova, I. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins. Journal of biomolecular NMR, 66(3), 209–219. (2016).
    162. Mehta, S., & Zhang, J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nature reviews. Cancer, 22(4), 239–252. (2022).

    無法下載圖示 校內:2028-01-01公開
    校外:2028-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE