簡易檢索 / 詳目顯示

研究生: 蔡金晏
Tsai, Chin-Yen
論文名稱: 有限元素法波場模式之延伸
Extension of Wave Modeling in Finite Element Method
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 碎波有限元素法緩坡方程式
外文關鍵詞: wave breaking, mild-slope equation, finite element method
相關次數: 點閱:53下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對橢圓型態之緩坡方程式,以有限元素法建立波浪數值模式,模式中考量波浪於近岸傳遞時可能因地形及結構物產生能量消散等變化,擬將模式延伸至包含非線性淺化、碎波及潛式透水結構物等範疇。模式建立時所採用之邊界條件為近似輻射邊界條件,而外海開放邊界條不等水深處,則是沿用許等人 (2001) 所提出之不等水深輻射邊界條件予以設定。文中主要探討各碎波指標及碎波能量消散項應用於模式之適用性,並進一步加入非線性淺化修正項以改善線性淺化公式於描述波浪碎波波高之不足。此外,考慮實際應用時可能面臨之潛式透水結構物問題,於緩坡方程式中加入透水介質效應以期能反應出波浪於透水結構物中能量之損失效應。經由波浪通過各式斜坡底床地形的校核計算,結果經與實驗數據之比較顯示應用McCowan (1894) 及Dally等人 (1985) 之碎波指標及碎波能量消散公式模擬波浪於斜坡上碎波所獲結果較為滿意,而非線性淺化修正項亦提升能模式預測碎波點附近波高之精確性。此外,對於波浪通過透水潛堤之測試中,顯示考慮透水效應之波場模式可以得到與實驗數據相近之計算結果。

    A numerical model based on elliptic mild–slope equation is developed using finite element method. The model is extended to include the effects of wave breaking, nonlinear shoaling and waves propagating over a submerged permeable breakwater. The radiation boundary condition is approximated to the second-order term for wave with large angle incidence. On the open boundaries with varying depth, the boundary conditions proposed by Hsu et al. (2001) is adopted. To verify the validity of the present model, cases of wave propagating over different sloping beaches were run using the developed computer program. The results show that the wave criteria addressed by McCowan (1894) and by Dally et al. (1985) provide more accurate predictions in the numerical calculation. Furthermore, numerical results also show that the addition of nonlinear shoaling term in the mild-slope equation could improve underestimation of wave height around the breaking point. The model is also examined for the cases of waves passing over submerged permeable breakwaters. Model results are well compared with the experimental data.

    中文摘要...............................................I 英文摘要..............................................II 致謝.............................................III 目錄..............................................IV 圖目錄..............................................VI 表目錄............................................VIII 符號說明..............................................IX 第一章 緒論...............................................1  1-1 研究動機與目的...............................................1  1-2 前人研究...............................................4  1-3 本文組織...............................................8 第二章 理論基礎...............................................9  2-1 緩坡方程式...............................................9  2-2 含透水介質效應之緩坡方程式..............................................10  2-3 邊界條件..............................................11   2-3-1 近似輻射邊界條件..............................................13   2-3-2 全反射、部分反射或全透射邊界條件..............................................14   2-3-3 外海開放邊界條件..............................................15  2-4 碎波指標與碎波能量消散項..............................................17  2-5 非線性淺化修正項..............................................18 第三章 數值模式..............................................21  3-1 離散方程式..............................................21  3-2 有限元素法..............................................26   3-2-1 二次形狀函數..............................................26   3-2-2 領域積分..............................................28   3-2-3 邊界積分..............................................28  3-3 計算流程..............................................30 第四章 結果與討論..............................................32  4-1 碎波指標與碎波能量消散項之測試..............................................32   4-1-1 波浪正向入射等坡度斜坡底床..............................................34   4-1-2 波浪正向入射複合式斜坡底床..............................................46   4-1-3 綜合討論..............................................52  4-2 非線性淺化修正項之測試..............................................53  4-3 透水介質效應之測試..............................................56 第五章 結論與建議..............................................63  5-1 結論..............................................63  5-2 建議..............................................64 參考文獻..............................................65

    1. Becker, E. B., Carey, G. F., Oden, J.T., "Finite Elements an Introduction Volume I," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A. pp. 207-208 (1981).
    2. Behrendt, L., "A Finite Element Model for Water Wave Diffraction Including Boundary Absorption and Bottom Friction," Series Paper 37, Institute of Hydrodynamics and Hydraulic Engineering, University of Denmark (1985).
    3. Berkhoff, J.C.W., "Computation of Combined Refraction-Diffraction," Proceedings of 13th International Conference on Coastal Engineering, pp. 471-490 (1972).
    4. Berkhoff, J.C.W., Booij, N., Radder, A.C., "Verification of Numerical Wave Propagation Models for Simple Harmonic Linear Water Waves," Coastal Engineering, Vol. 6, pp. 255-279 (1982).
    5. Bettess, P. and Zienkiewicz, O.C., "Diffraction and Refraction of Surface Waves Using Finite and Infinite Element," International Journal for Numerical Methods in Engineering, Vol. 11, pp. 1271-1290 (1977).
    6. Booij, N., "Gravity Waves on Water with Non-uniform Depth and Current," Delft University of Technology, Department of Civil Engineering, Report No. 81-1, (1981).
    7. Battjes, J.A. and Janssen, J., "Energy loss and set-up due to breaking of random waves," Proceedings of 16th International Conference on Coastal Engineering, pp. 569-587 (1978).
    8. Black, K.P. and Rosenberg, M.A., "Energy loss and set-up due to breaking of random waves," Proceedings of 16th International Conference on Coastal Engineering, pp. 569-587 (1978).
    9. Chen, H.S. and Mei, C.C., "Oscillation and Wave Force on an Offshore Harbor," Ralph M. Parsons Laboratory, Massachussetts Institute of Technology, Report No. 190 (1974).
    10. Copeland, G.J.M., "A Practical Alternative to the Mild-slope Wave Equation," Coastal Engineering, Vol. 9, pp. 125-149 (1985).
    11. Dally, W.R., Dean, R.G., Dalrymple, R.A., "Wave Height Variation Across Beaches of Arbitrary Profile, " Journal of Geophysical Research, Vol. 90, pp. 11917-11927 (1985).
    12. Dalrymple, R.A., Suh, K.D., Kirby, J.T., Chag, J.W., "Models for Very Wide-Angle Water Waves and Wave Diffraction. Part 2. Irregular Bathymetry," Journal of Fluid Mechanics, Vol. 201, pp. 299-322 (1989).
    13. Dingemans, M.W., "Verification of Numerical Wave Propagation Method with Field Measurements:CREDIZ Verification Haringvliet," Rep W488, pt. 1, Delft Hydraulic Laboratory, Delft (1983).
    14. Goda, Y., "Irregular Wave Deformation in the Surf Zone," Coastal Engineering In Japan, Vol. 18, pp. 13-26 (1975).
    15. Hsu, T.W., and Wen, C.C., "On the Parabolic Approximation for Water Wave Transformation," 19th Ocean Engineering, Taichung, pp. 97-104 (1997).
    16. Hsu, T.W., and Wen, C.C., "A Study of Using Parabolic Model to Describe Wave Breaking and Wide-angle Wave Incidence," Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, pp. 515-527 (2000).
    17. Isaacson, M., and Qu, S., "Waves in a Harbour with Partially Reflection Boundaries." Coastal Engineering, Vol. 14, pp. 193-214 (1990).
    18. Ito, Y. and Tanimoto, K., "A Method of Numerical Analysis of Wave Propagation Application to Wave Diffraction and Refraction," Proceedings of 13th International Conference on Coastal Engineering, pp. 503-522 (1972).
    19. Isobe, M., "A Parabolic Equation Model for Transformation of Irregular Waves due to Refraction, Diffraction and Breaking," Coastal Engineering in Japan, Vol. 30, pp. 33-47 (1987).
    20. Kirby, J.T., "Higher-Order Approximations in the Parabolic Equation Method for Water Waves," Journal of Geophysical Research, Vol. 91, pp. 933-952 (1986a).
    21. Kirby, J.T., "Rational Approximations in the Parabolic Equation Method for Water Waves," Coastal Engineering, Vol. 10, pp. 355-378 (1986b).
    22. Le Mehaute, B. and Wang, J.D., "On the Breaking of Waves Arriving at an Angle to the Shore," Journal of Fluid Mechanics, Vol. 141, pp. 265-274 (1984).
    23. Li, B., "An Evolution Equation for Water Waves, " Coastal Engineering, Vol. 23, pp. 227-242 (1994).
    24. Liu, P.L.F., "Damping of Water Waves Over porous Bed," Journal of Hydraulic Division, Vol. 99, pp. 2263-2271 (1987).
    25. Losada, I.J., Silva, R., Losada, M.A., "Interaction of Non-breaking Directional Random Waves with Submerged Breakwaters," Coastal Engineering, Vol. 28, pp. 249-266 (1996).
    26. Madsen, P.A. and Larsen, J., "An Efficient Finite-Diffraction Approach to the Mild-slope Equation," Coastal Engineering, Vol. 11, pp. 329-351 (1987).
    27. Mase, H. and Iwagaki, Y., "Wave Height Distribution and Wave Grouping in Surf Zone," Proceedings of 18th International Conference on Coastal Engineering, pp. 52-78 (1982).
    28. McCowan, J., "On the Highest Wave of Permanent Type," Philos. Mag. Edinburgh, 38(5), pp. 351-358 (1894).
    29. Nagayama, S., "Study on the Change of Wave Height and Energy in the Surf Zone," Bachelor thesis, Yokohama National University, 80pp. (1983).
    30. Panchang, V.G., Chen, W., Xu, B., Schlenker, K., Demirbilek, Z., Okihiro, M., "Exterior Bathymetric Effects in Elliptic Harbor Wave Models", Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, pp. 71-78 (2000).
    31. Panchang, V.G., Pearce, B.R., Ge, W., Cushman-Roisin, B., "Solution of the Mild-Slope Wave Problem by Iteration," Applied Ocean Research., 13(4). pp. 187-199 (1991).
    32. Radder, A.C., "On the Parabolic Equation Method for Water Wave Propagation," Journal of Fluid Mechanics, Vol. 95, pp. 159-176 (1979).
    33. Rojanakamthorn, S., Isobe, M., Watababe, A., "A Mathematical Model of Wave Transformation Over a Submerged Breakwater," Coastal Engineering in Japan, Vol. 32, pp. 209-234 (1989).
    34. Shuto, N., "Nonlinear Long Waves in a Channel of Variable Section," Coastal Engineering in Japan, Vol. 17, pp. 1-12 (1974).
    35. Sollitt, C.K. and Cross, R.H., "Wave Transmission Through Permeable Breakwaters," Proceedings of 13th International Conference on Coastal Engineering, pp. 1827-1846 (1972).
    36. Watanabe, A. and Maruyama, K., "Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking," Coastal Engineering in Japan, Vol. 29, pp. 19-39 (1986).
    37. Zhao, L., Panchang, V.G., Chen, W., Demirbilek, Z., Chhabbra, N., "Simulation of Wave Breaking Effects in Two-dimensional Elliptic Harbor Wave Model," Coastal Engineering, Vol. 42, pp. 359-373 (2001).
    38. 林貴斌,「以有限元素法模擬大角度入射之波場」,國立成功大學水利及海洋工程研究所碩士論文 (2000)。
    39. 郭一羽主編,「海岸工程學」,文山書局,第149頁-第153頁 (2001)。
    40. 許泰文,蔡丁貴,顏朝卿,陳伯旭,「以有限元素法模擬近岸波場」,第二十屆海洋工程研討會論文集,第491頁-第499頁 (1998)。
    41. 許泰文,藍元志,林貴斌,「以有限元素法模擬大角度入射之波浪變形」,第二屆國際海洋大氣會議論文彙編-海洋,第160-165頁 (2000)。
    42. 許泰文,藍元志,王永和,「以有限元素法模擬波浪變形」,第十二屆水利工程研討會論文集,第I37-I44頁 (2001)。
    43. 陳伯旭,蔡丁貴,「局部輻射邊界條件在水波數值模式上之應用」,第十二屆海洋工程研討會論文集,第1頁-第9頁 (1990)。
    44. 陳伯旭,蔡丁貴,「以有限元素法模擬模擬近岸碎波波場」,八十六年度海岸工程數值模式研討會論文集,第29頁-第40頁 (1997)。
    45. 溫志中,「修正緩坡方程式之研發與應用」,國立成功大學水利及海洋工程研究所博士論文 (2001)。
    46. 蔡清標,陳鴻彬,許修党,「碎波帶波高變化之計算」,港灣技術研究報告,第十卷,第一期,第93頁-第111頁 (1995)。
    47. 謝祥生,「離岸堤背後灘線變化與堆沙效果之研究」,國立成功大學水利及海洋工程研究所碩士論文 (1998)。
    48. 蘇青和,「多孔消散波體波能消散解析及其應用於港池之研究」,國立成功大學水利及海洋工程研究所博士論文 (1993)。
    49. 漥 泰浩,小竹康夫,磯部雅彥,渡邊 晃,「非定常緩勾配不規則波動方程式について」,海岸工學論文集,第38卷,pp. 46-50 (1991)。

    下載圖示 校內:立即公開
    校外:2003-06-20公開
    QR CODE