| 研究生: |
宋惟寬 Sung, Wei-Kuan |
|---|---|
| 論文名稱: |
中和前胸腺素減緩小鼠實驗性結腸炎 Neutralization of prothymosin α ameliorates experimental colitis in mice |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 前胸腺素 、發炎性腸道疾病 、TGF-β 、IL-17 |
| 外文關鍵詞: | prothymosin α, Inflammatory Bowel Disease, TGF-β, IL-17 |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發炎性腸道疾病(inflammatory bowel disease) 是一種長期慢性發炎的疾病,這種疾病會造成疼痛、嘔吐、腹瀉、直腸出血和體重減輕。前胸腺素(prothymosin α)是一種高度酸性且廣泛存在各種生物中的蛋白,涉及多種細胞內和細胞外功能,如細胞增殖、凋亡、氧化壓力和免疫調節等功能。我們實驗室先前的研究發現前胸腺素過度表達在肺氣腫的致病機制佔有重要角色,其機制是透過增加NFκB和Smad7的乙醯化 (acetylation),最後會導致NFκB的活化以及抑制transforming growth factor-β (TGF-β)的訊號傳導。過去研究發現TGF-β訊號傳導能促進regulatory T (Treg)以及T helper 17 (Th17)細胞的分化,而由Th17所產生的interleukin-17 (IL-17)也被認為在發炎性腸道疾病中具有維持腸道上皮細胞中緊密連接蛋白(tight junction protein)的完整性。因此我們推測前胸腺素可透過抑制TGF-β之訊號傳導,而減少Treg和Th17細胞的分化,導致發炎性腸道疾病更為嚴重。在本研究中,我們利用葡聚糖硫酸鈉(dextran sodium sulfate,DSS)在C57BL/6小鼠誘導結腸炎的模式模擬人類發炎性腸道疾病,探討前胸腺素是否可透過損害腸道上皮細胞屏障的完整性,而在結腸炎致病機制中扮演角色,且前胸腺素是否可作為治療的標的。我們發現在DSS誘導結腸炎的小鼠其前胸腺素的表現量在第七天有顯著增加,且其表現量似乎和結腸炎的嚴重程度呈現正相關。以DSS誘導結腸炎之前胸腺素轉殖基因小鼠中,亦發現結腸中IL-17A的mRNA與野生型小鼠相比有較低的表現。值得注意的是DSS誘導結腸炎之小鼠以抗前胸腺素的單株抗體治療,可減緩結腸炎的症狀,且結腸中IL-17A的mRNA有上升的現象,而腸道上皮細胞的通透性也有降低的結果。p38及JNK的磷酸化被認為能夠維持穩定腸壁細胞的功能,在SW480大腸癌細胞過度表達前胸腺素的實驗中,我們也觀察到由IL-17引起的下游反應,包括p38及JNK的磷酸化有明顯地下降;觀察緊密連接蛋白中的封閉蛋白(occludin)也確實有減少的趨勢。總結本研究的結果,我們發現前胸腺素除了會抑制TGF-β訊號外,也會降低腸道上皮細胞屏障的完整性,而在發炎性腸道疾病致病機制中扮演角色;我們的研究結果亦顯示前胸腺素可作為治療發炎性腸道疾病的標的。
Inflammatory bowel disease (IBD) is a chronic inflammatory disease that causes abdominal pain, vomiting, diarrhea, rectal bleeding, and weight loss. Prothymosin α (ProT) has diverse biological functions, such as cell proliferation, apoptosis, oxidative stress, and immunomodulation. We have shown that ProT contributes to emphysema pathogenesis through inhibiting TGF-β signaling. TGF-β signaling can promote regulatory T (Treg)/T helper 17 (Th17) cell differentiation. IL-17 produced by Th17 cells can maintain intestinal epithelial barrier for tight junction formation in IBD. As ProT can inhibit TGF-β signaling, we hypothesized that it may downregulate Treg and Th17 cell differentiation and cause IBD. In this study, we used a C57BL/6 mouse model of dextran sodium sulfate (DSS)-induced colitis resembling human IBD to investigate whether ProT played a role in colitis pathogenesis and could serve as a therapeutic target. Our results show that expression of ProT was positively correlated with the degree of colitis severity. Furthermore, ProT transgenic mice treated with DSS expressed lower levels of IL-17A mRNA compared with their control counterparts. Notably, treatment of mice with anti-ProT monoclonal antibody during DSS induction ameliorated colitis symptoms, reduced colon epithelial cell permeability, and increased colon IL-17A mRNA levels. Overexpression of ProT in SW480 colon cancer cells reduced occludin expression and inhibited IL-17 downstream signaling, including p38 and JNK phosphorylation. Collectively, our results demonstrate that in addition to the inhibition of TGF-β signaling, ProT can reduce the intestinal epithelial barrier integrity and thereby contribute to the pathogenesis of IBD. Furthermore, ProT may be a therapeutic target for IBD.
Aharoni, R., B. Kayhan, O. Brenner, H. Domev, G. Labunskay and R. Arnon (2006). Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel disease. J Pharmacol Exp Ther 318: 68-78.
Alex, P., N. C. Zachos, T. Nguyen, L. Gonzales, T. E. Chen, L. S. Conklin, M. Centola and X. Li (2009). Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15: 341-352.
Bailey, R. W. and E. J. Bourne (1961). Intracellular glycosidases of dextran-producing bacteria. Nature 191: 277-278.
Baxevanis, C. N., S. Frillingos, K. Seferiadis, G. J. Reclos, P. Arsenis, A. Katsiyiannis, E. Anastasopoulos, O. Tsolas and M. Papamichail (1990). Enhancement of human T lymphocyte function by prothymosin α: increased production of interleukin-2 and expression of interleukin-2 receptors in normal human peripheral blood T lymphocytes. Immunopharmacol Immunotoxicol 12: 595-617.
Baxevanis, C. N., G. J. Reclos, M. Economou, P. Arsenis, A. Katsiyiannis, K. Seferiades, G. Papadopoulos, O. Tsolas and M. Papamichail (1988). Mechanism of action of prothymosin α in the human autologous mixed lymphocyte response. Immunopharmacol Immunotoxicol 10: 443-461.
Bene, L., A. Falus, N. Baffy and A. K. Fulop (2011). Cellular and molecular mechanisms in the two major forms of inflammatory bowel disease. Pathol Oncol Res 17: 463-472.
Bernstein, C. N., M. Fried, J. H. Krabshuis, H. Cohen, R. Eliakim, S. Fedail, R. Gearry, K. L. Goh, S. Hamid, A. G. Khan, A. W. LeMair, Malfertheiner, Q. Ouyang, J. F. Rey, A. Sood, F. Steinwurz, O. O. Thomsen, A. Thomson and G. Watermeyer (2010). World Gastroenterology Organization Practice Guidelines for the diagnosis and management of IBD in 2010. Inflamm Bowel Dis 16: 112-124.
Bettelli, E., Y. Carrier, W. Gao, T. Korn, T. B. Strom, M. Oukka, H. L. Weiner and V. K. Kuchroo (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238.
Bettelli, E., M. Oukka and V. K. Kuchroo (2007). T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8: 345-350.
Bouma, G. and W. Strober (2003). The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3: 521-533.
Brimnes, J., J. Reimann, M. Nissen and M. Claesson (2001). Enteric bacterial antigens activate CD4+ T cells from scid mice with inflammatory bowel disease. Eur J Immunol 31: 23-31.
Cai, Z., W. Zhang, M. Li, Y. Yue, F. Yang, L. Yu, X. Cao and J. Wang (2010). TGF-β1 gene-modified, immature dendritic cells delay the development of inflammatory bowel disease by inducing CD4+Foxp3+ regulatory T cells. Cell Mol Immunol 7: 35-43.
Chassaing, B., J. D. Aitken, M. Malleshappa and M. Vijay-Kumar (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104: Unit 15 25.
Chen, Y. C., F. P. Chen, T. J. Chen, L. F. Chou and S. J. Hwang (2008). Patterns of traditional Chinese medicine use in patients with inflammatory bowel disease: a population study in Taiwan. Hepatogastroenterology 55: 467-470.
Conteas, C. N., M. G. Mutchnick, K. C. Palmer, F. E. Weller, G. D. Luk, P. H. Naylor, M. R. Erdos, A. L. Goldstein, C. Panneerselvam and B. L. Horecker (1990). Cellular levels of thymosin immunoreactive peptides are linked to proliferative events: evidence for a nuclear site of action. Proc Natl Acad Sci U S A 87: 3269-3273.
Costello, C. M., N. Mah, R. Hasler, P. Rosenstiel, G. H. Waetzig, A. Hahn, T. Lu, Y. Gurbuz, S. Nikolaus, M. Albrecht, J. Hampe, R. Lucius, G. Kloppel, H. Eickhoff, H. Lehrach, T. Lengauer and S. Schreiber (2005). Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med 2: e199.
Di Cesare, A., P. Di Meglio and F. O. Nestle (2009). The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129: 1339-1350.
Eschenfeldt, W. H., R. E. Manrow, M. S. Krug and S. L. Berger (1989). Isolation and partial sequencing of the human prothymosin α gene family. Evidence against export of the gene products. J Biol Chem 264: 7546-7555.
Evstafieva, A. G., G. A. Belov, M. Kalkum, N. V. Chichkova, A. A. Bogdanov, V. I. Agol and A. B. Vartapetian (2000). Prothymosin α fragmentation in apoptosis. FEBS Lett 467: 150-154.
Fuss, I. J., M. Neurath, M. Boirivant, J. S. Klein, C. de la Motte, S. A. Strong, C. Fiocchi and W. Strober (1996). Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157: 1261-1270.
Garbin, F., K. Eckert, P. Immenschuh, E. D. Kreuser and H. R. Maurer (1997). Prothymosin α1 effects, in vitro, on the antitumor activity and cytokine production of blood monocytes from colorectal tumor patients. Int J Immunopharmacol 19: 323-332.
Grunberg, E., K. Eckert and H. R. Maurer (1998). Prothymosin α1 antagonizes the inhibitory effects of transforming growth factor-β1 on the adhesion of peripheral blood lymphocytes to human umbilical vein endothelial cells. Int J Mol Med 1: 741-746.
Halme, L., P. Paavola-Sakki, U. Turunen, M. Lappalainen, M. Farkkila and K. Kontula (2006). Family and twin studies in inflammatory bowel disease. World J Gastroenterol 12: 3668-3672.
Haritos, A. A., G. J. Goodall and B. L. Horecker (1984). Prothymosin α: isolation and properties of the major immunoreactive form of thymosin α1 in rat thymus. Proc Natl Acad Sci U S A 81: 1008-1011.
Harris, A., E. R. Feller and S. A. Shah (2009). Medical therapy of IBD in 2009. Med Health R I 92: 78-81.
Hisamatsu, T., M. Suzuki, H. C. Reinecker, W. J. Nadeau, B. A. McCormick and D. K. Podolsky (2003). CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124: 993-1000.
Jiang, X., H. E. Kim, H. Shu, Y. Zhao, H. Zhang, J. Kofron, J. Donnelly, D. Burns, S. C. Ng, S. Rosenberg and X. Wang (2003). Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science 299: 223-226.
Kaser, A., S. Zeissig and R. S. Blumberg (2010). Inflammatory bowel disease. Annu Rev Immunol 28: 573-621.
Kay, E. P., M. S. Lee, G. J. Seong and Y. G. Lee (1998). TGF-β s stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res 17: 286-293.
Kitajima, S., S. Takuma and M. Morimoto (2000). Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp Anim 49: 9-15.
Lee, J. S., C. M. Tato, B. Joyce-Shaikh, M. F. Gulen, C. Cayatte, Y. Chen, W. M. Blumenschein, M. Judo, G. Ayanoglu, T. K. McClanahan, X. Li and D. J. Cua (2015). Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity 43: 727-738.
Lynch, H. T., R. E. Brand and G. Y. Locker (2004). Inflammatory bowel disease in Ashkenazi Jews: implications for familial colorectal cancer. Fam Cancer 3: 229-232.
Makarova, T., N. Grebenshikov, C. Egorov, A. Vartapetian and A. Bogdanov (1989). Prothymosin α is an evolutionary conserved protein covalently linked to a small RNA. FEBS Lett 257: 247-250.
Markova, O. V., A. G. Evstafieva, S. E. Mansurova, S. S. Moussine, L. A. Palamarchuk, M. O. Pereverzev, A. B. Vartapetian and V. P. Skulachev (2003). Cytochrome c is transformed from anti- to pro-oxidant when interacting with truncated oncoprotein prothymosin α. Biochim Biophys Acta 1557: 109-117.
McGovern, D. P., D. A. van Heel, T. Ahmad and D. P. Jewell (2001). NOD2 (CARD15), the first susceptibility gene for Crohn's disease. Gut 49: 752-754.
Melgar, S., A. Karlsson and E. Michaelsson (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 288: G1328-1338.
Molodecky, N. A., I. S. Soon, D. M. Rabi, W. A. Ghali, M. Ferris, G. Chernoff, E. I. Benchimol, R. Panaccione, S. Ghosh, H. W. Barkema and G. G. Kaplan (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142: 46-54 e42; quiz e30.
Moses, H. L. (1992). TGF-β regulation of epithelial cell proliferation. Mol Reprod Dev 32: 179-184.
Mosoian, A. (2011). Intracellular and extracellular cytokine-like functions of prothymosin α : implications for the development of immunotherapies. Future Med Chem 3: 1199-1208.
Nguyen, D. D. and S. B. Snapper (2009). Targeting Smads to restore transforming growth factor-β signaling and regulatory T-cell function in inflammatory bowel disease. Gastroenterology 136: 1161-1164.
O'Carroll, C., G. Moloney, G. Hurley, S. Melgar, E. Brint, K. Nally, R. J. Nibbs, F. Shanahan and R. J. Carmody (2013). Bcl-3 deficiency protects against dextran-sodium sulphate-induced colitis in the mouse. Clin Exp Immunol 173: 332-342.
Ogawa, A., A. Andoh, Y. Araki, T. Bamba and Y. Fujiyama (2004). Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110: 55-62.
Okayasu, I., S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki and R. Nakaya (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98: 694-702.
Oppmann, B., R. Lesley, B. Blom, J. C. Timans, Y. Xu, B. Hunte, F. Vega, N. Yu, J. Wang, K. Singh, F. Zonin, E. Vaisberg, T. Churakova, M. Liu, D. Gorman, J. Wagner, S. Zurawski, Y. Liu, J. S. Abrams, K. W. Moore, D. Rennick, R. de Waal-Malefyt, C. Hannum, J. F. Bazan and R. A. Kastelein (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715-725.
Shiwa, M., Y. Nishimura, R. Wakatabe, A. Fukawa, H. Arikuni, H. Ota, Y. Kato and T. Yamori (2003). Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun 309: 18-25.
Song, X., D. Dai, X. He, S. Zhu, Y. Yao, H. Gao, J. Wang, F. Qu, J. Qiu, H. Wang, X. Li, N. Shen and Y. Qian (2015). Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage. Immunity 43: 488-501.
Starnes, T., M. J. Robertson, G. Sledge, S. Kelich, H. Nakshatri, H. E. Broxmeyer and R. Hromas (2001). Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 167: 4137-4140.
Su, B. H., Y. L. Tseng, G. S. Shieh, Y. C. Chen, P. Wu, A. L. Shiau and C. L. Wu (2016). Over-expression of prothymosin-α antagonizes TGFβ signalling to promote the development of emphysema. J Pathol 238: 412-422.
Sukhacheva, E. A., A. G. Evstafieva, T. V. Fateeva, V. R. Shakulov, N. A. Efimova, R. N. Karapetian, Y. P. Rubtsov and A. B. Vartapetian (2002). Sensing prothymosin α origin, mutations and conformation with monoclonal antibodies. J Immunol Methods 266: 185-196.
Toussirot, E. (2012). The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets 11: 159-168.
Veldhoen, M., R. J. Hocking, C. J. Atkins, R. M. Locksley and B. Stockinger (2006). TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179-189.
Wang, Y., X. P. Liu, Z. B. Zhao, J. H. Chen and C. G. Yu (2011). Expression of CD4+ forkhead box P3 FOXP3+ regulatory T cells in inflammatory bowel disease. J Dig Dis 12: 286-294.
Weaver, C. T., R. D. Hatton, P. R. Mangan and L. E. Harrington (2007). IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821-852.
Wilson, N. J., K. Boniface, J. R. Chan, B. S. McKenzie, W. M. Blumenschein, J. D. Mattson, B. Basham, K. Smith, T. Chen, F. Morel, J. C. Lecron, R. A. Kastelein, D. J. Cua, T. K. McClanahan, E. P. Bowman and R. de Waal Malefyt (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950-957.
Wu, C. L., A. L. Shiau and C. S. Lin (1997). Prothymosin α promotes cell proliferation in NIH3T3 cells. Life Sci 61: 2091-2101.
Xavier, R. J. and D. K. Podolsky (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427-434.
校內:2027-07-28公開