簡易檢索 / 詳目顯示

研究生: 石佩璇
Shi, Pei-Hsuan
論文名稱: 千瓦級雷射的溫場效應對金屬披覆成效之研究
Study on the Temperature Distribution to the Metal Cladding Efficiency by Using kW-class Fiber Laser
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 金屬雷射積層ANSYS雷射功率移動速度Stellite6
外文關鍵詞: Metal laser cladding, ANSYS, Laser power, Moving speed, Stellite6
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沖棒是沖壓模具的耗材,為了增長使用壽命,在接觸面上披覆鈷基合金。為了提升相關產業的製造技術,本研究透過千瓦級光纖雷射進行積層,並搭配溫度感測器量測基材的溫度,探討不同雷射功率、移動速度及冷卻效應所產生的溫度變化對沖棒金屬積層之厚度成效。
    數值模擬部分,使用ANSYS軟體分析積層時移動熱源於不同表面位置所產生的溫度變化,進一步模擬不同雷射功率、移動速度和冷卻效應對整體溫度變化的影響。實驗部分,將Stellite6 多層積層在模具鋼上,以雷射功率、移動速度、散熱塊與單層休息時間為變數,觀察積層表面狀況及量測積層厚度。實際溫度量測,使用耐高溫的熱電偶,用來驗證分析模型的設定與實際溫度是否符合。
    結果顯示,在表面強化製程中溫場確實會影響金屬披覆之成效。當比能量越大且高溫維持在特定溫度區間時披覆厚度較厚。透過人工智慧將現有的實驗數據建立數據庫,以比能量、ANSYS模擬積層時單層的起始與結束溫度、送粉率作為變因預估單層積層厚度,並與實驗結果比較亦獲得不錯之結果。


    The purpose of this study is to investigate the temperature effects of laser power, moving speed and cooling effect on the thickness of laser cladding Stellite6. A kilowatt class fiber laser was assembled by ourselves to carry out the experiment of laser cladding on the punch. Used the ANSYS transient thermal module to simulate the temperature change during the cladding. Observe the relationship between the laser cladding and the temperature change. The results show that the temperature does affect the effectiveness of metal cladding. When the specific energy is higher and the high temperature is maintained in a specific temperature range, the coating thickness is thicker. Based on the existing experimental data, the thickness of monolayer was predicted successfully.

    摘要 i 致謝 iv 目錄 v 表目錄 ix 圖目錄 xi 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 第2章 雷射積層相關介紹 10 2.1 雷射 11 2.2 雷射積層設備種類 17 2.2.1 粉床式 17 2.2.2 噴粉式 18 2.3 雷射積層加工參數[18] 19 2.4 千瓦級雷射系統整合 21 2.4.1 運動控制系統[19] 21 2.4.2 光纖雷射控制系統 26 2.4.3 雷射同軸送粉系統 31 2.4.4 周邊設備 34 2.4.5 軟體與硬體的整合 35 2.4.6 系統功能測試與積層量測 38 2.5 G-Code產生器 43 2.5.1 Skeinforge 43 2.5.2 Slic3r 44 2.5.3 Cura 45 2.5.4 LabVIEW自行書寫 46 第3章 有限元素法分析模組 54 3.1 雷射積層溫場分析流程 54 3.2 溫度量測系統 55 3.3 ANSYS軟體 59 3.3.1 模型設定與假設條件 62 3.3.2 材料性質設定 63 3.3.3 網格設定 65 3.3.4 模擬參數設定 67 3.3.4.1 透過對流和傳導進行散熱 69 3.3.4.2 透過對流、傳導和輻射進行散熱 71 第4章 溫場與積層厚度之關聯性 75 4.1 模擬三種不同比能量沖棒溫度分布 76 4.2 單層厚度 79 4.3 比能量造成的溫場變化 83 4.3.1 模擬比能量造成的溫場變化(不考慮熱輻射) 84 4.3.2 模擬比能量造成的溫場變化(考慮熱輻射) 85 4.4 散熱塊造成的溫場變化 86 4.4.1 散熱塊造成的溫場變化(不考慮熱輻射) 86 4.4.2 散熱塊造成的溫場變化(考慮熱輻射) 88 4.5 休息時間造成的溫場變化 89 4.5.1 休息時間造成的溫場變化(不考慮熱輻射) 89 4.5.2 休息時間造成的溫場變化(考慮熱輻射) 91 4.6 積層厚度預估 92 第5章 結果與討論 98 5.1 結論 98 5.2 建議與未來展望 99 參考文獻 101

    [1] 台灣電漿股份有限公司,PTA粉末焊接機,Available:http://www.plasma.com.tw/product_info.asp?id=180
    [2] Hengli。激光熔覆技術。Available:https://www.henglihydraulic.com/products/thermal-spraying/844.html
    [3] 航空葉片修復,解放軍5719廠讓葉片重新長出來!。Available:https://kknews.cc/military/mex6vjg.html
    [4] SULZER。Superior wear resistance with laser weld repairs。Available:https://www.sulzer.com/en/shared/services/laser-weld-repairs
    [5] Lijun Han, Kaushik M. Phatak, and F. W. Liou, “Modeling of laser deposition and repair process”, Journal of Laser Applications, Volume 17, Issue2, pp.89-99, May 2005.
    [6] Hong-yun Zhao, Hong-tao Zhang, Chun-hua XU and Xian-qun Yang, “Temperature and stress fields of multi-track laser cladding”, Transactions of Nonferrous Metals Society of China, Volume 19, Supplement 2, pp.495-501, September 2009.
    [7] Lijun Song and Jyoti Mazumber, “Feedback Control of Melt Pool Temperature During Laser Cladding Process”, IEEE Transactions on Control Systems Technology, Volume 19, Issue 6, pp.1349-1356, November 2011.
    [8] Chengfa Song and Mingdi Wang, “Numerical Simulation of Feeding Powder Laser Cladding Temperature Field Based on ANSYS”, Advanced Materials Research, Volumes 690-693, pp.3334-3337, May 2013.
    [9] Chenggang Ding, Xu Cui, Jianqiang Jiao and Ping Zhu, “Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique”, Materials, Volume 11, Issue 12, pp.2401-2411, 28 November 2018.
    [10] Zhaorui Yan, Weiwei Liu, Zijue Tang, Xuyang Liu, Nan Zhang, Zhenqiu Wang and Hongchao Zhang, “Effect of thermal characteristics on distortion in laser cladding of AISI 316L”, Journal of Manufacturing Process, Volume 44, pp.309-318, August 2019.
    [11] 雷射知識網,名詞解釋,Available:http://www.lasertech.tw/laser_noun.php?g_id=IyQlKiYlMTMlXiQqJio=
    [12] 皮理春秋/夏紹剛醫師的部落格,三張圖搞懂雷射原理,Available:https://doctorhsia.blogspot.com/2017/10/LaserBasic.html
    [13] WIKIPEDIA,Available:https://en.wikipedia.org/wiki/Transverse_mode
    [14] 高斯光束,Available:http://www.18wk.com/p-931404.html
    [15] WIKIPEDIA,Available:https://en.wikipedia.org/wiki/Rayleigh_length
    [16] 積層製造醫療器材之美國法規管理現況及產品簡介,Available:https://www.cde.org.tw/Content/Files/Knowledge/3ad731f8-4880-4bc3-a3f7-8efaf22a91dd.pdf
    [17] 南極熊3D打印網。Available:http://www.nanjixiong.com/forum.php
    [18] 華人百科,雷射熔覆,Available:https://www.itsfun.com.tw/%E9%9B%B7%E5%B0%84%E7%86%94%E8%A6%86/wiki-5998601-3190101
    [19] DELTA,Available:https://www.deltaww.com/
    [20] 創鑫公司連續光纖激光器使用手冊
    [21] NATIONAL INSTRUMENTS,Available:https://www.ni.com/zh-tw.html
    [22] U. de Oliveira, V. Ocelı´k, J.Th.M. De Hosson, “Analysis of coaxial laser cladding processing conditions”
    [23] THERMOPHYSICAL PROPERTIES OF SELECTED WEAR-RESTISTANT ALLOUS ,Hanford Engineering Development Laboratory,Available:https://www.osti.gov/servlets/purl/5157510
    [24] 曾釋鋒、黃國政、陳明飛、蕭文澤,高功率二氧化碳雷射切割金屬材料模 擬與分析,科儀新知第二十九卷第六期 97.6
    [25] 張廷愷,應用田口實驗法優化雷射鈷基金屬披覆參數之研究,國立成功大學系統所碩士論文,2020。

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE