簡易檢索 / 詳目顯示

研究生: 陳藝斌
Chen, Yi-Bin
論文名稱: 流道內矩形體對高溫型質子交換膜燃料電池性能增益之研究
Study on effect of cuboid in flow channel on performance of high-temperature PEM fuel cells
指導教授: 吳鴻文
Wu, Horng-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 97
中文關鍵詞: 高溫質子交換膜燃料電池矩形肋條變異數分析田口實驗方法阻抗分析
外文關鍵詞: HTPEM fuel cell, Cuboids, ANOVA, Taguchi method, Impedance analysis
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文建立三維全流道高溫型質子交換膜燃料電池數值模型,並以單通道研究之最佳肋條間距結果為基礎,於陰陽極流道側邊加裝肋條,並以蛇型全流道基礎下,安排肋條數量皆為10個與在四種不同流道位置組合下探討電池的性能,並得到電池在陰陽極流道於Case II的安排方式下,有最佳的淨功率,其輸出淨功率高於無加裝肋條流道設計約16.55 %。
    本文實驗透過田口方法L27直交表針對已加裝肋條之蛇形全流道進行實驗,運用L27直交表的五種操作參數(因子A:電池操作溫度、因子B:陽極入口相對濕度、因子C:陰極入口相對濕度、因子D:陽極化學計量比、因子E:陰極化學計量比),以最少的實驗次數探討相關因子對高溫型單電池的性能影響。實驗最佳結果經由L27直交表實驗組合得知,在操作條件為0.4V時,操作參數組合為A3B3C1D1E3,得到最大淨功率。根據ANOVA分析結果顯示,可發現因子E對電池性能的影響最大,其次是因子A, B;影響最小為因子D。
    透過比較Case II與無肋條之蛇型流道奈氏圖,可發現在Case II的流道設計下,有效降低歐姆阻抗及質傳阻抗。在操作電流5A與15A下的阻抗分析結果顯示,電池操作溫度比其他控制因子對歐姆阻抗及總阻抗影響較大。然而,總阻抗則隨著陰極化學計量比增加而降低。當反應氣體供不應求時,將影響功率及總阻抗等電池性能。

    This thesis establishes a high-temperature proton exchange membrane (HTPEM) fuel cell numerical model. According to the optimal cuboids spacing result of the single flow channel with the cuboids in both sides of anode and cathode flow channel, the author investigated the different cases by installing 10 cuboids and 4 arranging types in the entire serpentine flow channels. The result indicated that the maximum net electric power occurs at the channel of case II, and it is higher than the net electric power at the smooth-channel design model about 16.55%.
    The experiment employs Taguchi methods and the L27 orthogonal array to investigate the effect of inlet relative humidity on the performance of HTPEM fuel cell serpentine flow channel with cuboids. The L27 orthogonal array was conducted by selecting five control factors including temperature of fuel cell (Factor A), anode inlet relative humidity (Factor B), cathode inlet relative humidity (Factor C), the stoichiometric flow ratio of hydrogen (Factor D) and stoichiometric flow ratio of oxygen (Factor E). The influence of relevant factors on the performance of the HTPEM fuel cell was investigated with the least number of experiments. The maximal net electric power of the L27 orthogonal array occurs at the parameter combination of A3B3C1D1E3 with operating voltage 0.4V. The maximum effect is caused by factor E following by A and B, and the minimal impact is caused by factor D.
    The author compares Nyquist plots between the case II and smooth-channel design, and found that the case II can decrease ohmic and total impedance. The results of impedance analysis indicate that the operating temperature of fuel cell has the higher impact than other control factors for ohmic and total impedance in the 5A and 15A conditions. However, total impedance is decreased as stoichiometric flow ratio of oxygen increases. The lack of reactive gases has the primary impact on cell performance that includes electric power and total impedance.

    Table of Content 摘要 I Abstract III Acknowledgements V Table of Content VI List of Table IX List of Figures X Nomenclature 1 Chapter 1. Introduction 3 1.1 Overview 3 1.2 Introduction and characteristic of HTPEM fuel cell 4 1.3 Literature review 7 1.4 Motivation and Objectives 11 Chapter 2. Numerical description of HTPEM fuel cell 13 2.1 Mathematical assumptions 13 2.2 Governing equations 13 2.2.1 Mass conservation equation 13 2.2.2 Momentum conservation equation 14 2.2.3 Energy conservation equation 14 2.2.4 Species transport equation 14 2.2.5 Charge equation 15 2.3 Boundary conditions 16 2.4 Modeling domain and geometry 17 2.5 Numerical method 18 Chapter 3. Experimental instruments of HTPEM fuel cell 20 3.1 HTPEM fuel cell experimental system 20 3.2 Electronic load instrument 20 3.3 Heating system of HTPEM fuel cell 21 3.4 The EIS measurement instruments 21 3.5 Single serpentine HTPEM fuel cell 21 3.6 Heating-type humidification system 22 Chapter 4. Experimental methods of HTPEM fuel cell 23 4.1 Taguchi method 23 4.2 Experimental process of Taguchi method 23 4.2.1 Orthogonal array 24 4.2.2 Design of experiments and quality characteristics 24 4.2.3 Confirmation experiment 27 4.3 Measurement uncertainty 28 4.4 Principal component analysis (PCA) 30 4.5 Percentage reduction of quality loss (PRQL) 32 4.6 Fuel cell activation process 34 4.7 Heating with humidification of inlet relative humidity 35 4.8 Electrochemical impedance spectroscopy (EIS) 36 4.9 EIS Analysis of HTPEM fuel cell 37 Chapter 5. Results and discussion 38 5.1 Numerical simulation analysis for HTPEM fuel cell 38 5.1.1 The effect of cuboid position on entire performance and pressure drop loose 38 5.1.2 Distribution of reactant gases and temperature inside the flow field 41 5.1.3 Comparison between numerical and experimental results for the model of case II 42 5.2 Experimental analysis of Taguchi method for the model of case II 42 5.2.1 ANOVA of SN ratio and optimal factor combinations 43 5.2.2 The confidence interval of optimal parameter combination 44 5.2.3 The optimal factor combinations 45 5.3 The optimal condition obtained with different objectives by experiment 45 5.4 HTPEM fuel cell impedance analysis 46 5.5 The optimal condition obtained with principal components analysis (PCA) method 47 5.6 Comparison the optimum results between single and multiple objectives for the design model of case II 49 Chapter 6. Conclusions and future work 51 6.1 Conclusions 51 6.2 Future work 52 References 54   List of Table Table 1. The characteristics of different types of fuel cells 61 Table 2. Summary of the literature review in HTPEM fuel cell 62 Table 3. Geometry and physical properties parameters 63 Table 4. Taguchi orthogonal arrays 64 Table 5. Control factors and levels for the L27 (313) design 64 Table 6. Relative uncertainties of measured and calculated parameters 65 Table 7. Experimental results of HTPEM fuel cell at 0.4V for the L27 (313) design 66 Table 8. Experimental results of HTPEM fuel cell impedance at 5A and 15A for the L27 (313) design 67 Table 9. ANOVA for the L27 (313) design: (a) electrical power, (b) pressure drop in the anode side, and (c) pressure drop in the cathode side 68 Table 10. Principal components of multi-objectives 70 Table 11. Eigenvalues and eigenvectors for PCA method 71 Table 12. ANOVA for PCA method 71 Table 13. Comparison the optimal parameter conditions and PRQL among the electrical power, pressure drops. 72 List of Figures Fig. 1 The three-dimensional model of an entire cell with a cuboid array 73 Fig. 2 Schematic layout of (a) smooth channel (b) installation locations of cuboid row as designed variables 74 Fig. 3 Bipolar plate of serpentine channel with cuboid rows (case II) 75 Fig. 4 Comparison of simulation results for mesh independence study in three-dimensional model of an entire cell 75 Fig. 5 Schematic layout of experimental instruments 76 Fig. 6 Experimental instrument of the HTPEM fuel cell 77 Fig. 7 Electronic load instrument 77 Fig. 8 The heating control instrument of HTPEM fuel cell 78 Fig. 9 Test instruments of AC impedance and electronic load 78 Fig. 10 Single cell of HTPEM fuel cell 79 Fig. 11 Schematic of heating and humidification 79 Fig. 12 Process of heating and humidification 80 Fig. 13 The operation principle of the EIS method [54] 80 Fig. 14 The electrochemical impedance spectra analysis of PEM fuel cell 81 Fig. 15 Equivalent circuit of impedance for PEM fuel cell 81 Fig. 16 Comparison of polarization curves and power density curves between the smooth channel and four designs channel with cuboid row. 82 Fig. 17 Effects of the cuboid row positions on the local current density distributions at 0.4V along (a) 1st, (b) 9 th, (c) 17 th, and (d) full-scale channel 84 Fig. 18 Comparison of (a) electrical power, (b) pressure drop on the cathode side, (c) net power between smooth channel and four designs with cuboid rows 85 Fig. 19 Hydrogen concentration distributions of (a) the smooth-channel and (b) case II design for 0.4V at the catalyst layer 86 Fig. 20 Oxygen concentration distributions of (a) the smooth-channel and (b) case II design for 0.4V at the catalyst layer 87 Fig. 21 Temperature distributions of (a) the smooth-channel and (b) case II design for 0.4V at the catalyst layer 88 Fig. 22 The flow field variates in the 17th flow channel of (a) the smooth-channel and (b) case II design. 89 Fig. 23 Comparison of the polarization curves between the numerical and experimental results in the case II 90 Fig. 24 Comparison of the pressure drops in the cathode between the numerical and experimental results in the case II 90 Fig. 25 The S/N response plots of (a) electrical power (b) anode pressure drop (c) cathode pressure drop 91 Fig. 26 The S/N response plots with factor interaction of (a) A×B, (b) B×C, and (c) A×C. 92 Fig. 27 Comparison of the polarization curves for parametric optimization of different objectives at the maximal electrical power (A3B1C1D3E3), the minimal pressure drops (A1B3C1D1E1), and maximal net electrical power (A3B3C1D1E3) 93 Fig. 28 The S/N response plot of ohmic impedance for HTPEM fuel cell at 5 A 94 Fig. 29 The S/N response plot of total impedance for HTPEM fuel cell at 5 A 94 Fig. 30 The S/N response plot of ohmic impedance for HTPEM fuel cell at 15 A 95 Fig. 31 The S/N response plot of total impedance for HTPEM fuel cell at 15 A 95 Fig. 32 Comparison of impedance between the smooth-channel and case II model designs at 5A. 96 Fig. 33 Comparison of impedance between the smooth-channel and case II model designs at 15A. 96 Fig. 34 The S/N responses for multiple quality characteristics of PCA 97

    1. L.J. Fang, “The book of 2010 energy technique industry”, Bureau of economic, 2010.
    2. F.C. Lee, “New energy”, Hsin Wen Ging published corporation, 2009.
    3. J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John Wiley Inc, New York, pp.1-418, 2000.
    4. J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
    5. A.K. Santra, D.W. Goodman, “Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures”, Electrochimica Acta, Vol. 47, pp. 3595-3609, 2002.
    6. Q.F. Li, R.H. He, J.A. Gao, J.O. Jensen, N.J. Bjerrum, “The CO poisoning effect in PEM FUEL CELLs operational at temperatures up to 200 degrees C”, Journal of the Electrochemical Society, Vol.150, pp.1599-1605, 2003.
    7. P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice, R.I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces and reference to fuel cell catalysis”, Electrochimica Acta, Vol. 47, pp. 3637-3652, 2002.
    8. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non Pt oxygen reduction catalysts for PEM FUEL CELLs”, Applied Catalysis B: Environmental, Vol. 56, pp. 9-35, 2005.
    9. C. He, S. Desai, G. Brown, S. Bollepalli, “PEM Fuel Cell Catalysts: Cost, Performance, and Durability”, The Electrochemical Society Interface, Vol. 14, pp.41-45, 2005.
    10. J.L. Zhang, Z. Xie, J.J. Zhang , Y.H. Tanga, , C.J. Song, T.C. Navessin, Z.Q. Shi, D.T. Song, H.J. Wang, D.P. Wilkinson, Z.S. Liu, S. Holdcroft, “High temperature PEM fuel cells”, J. Power Sources, Vol. 160, pp. 872-891, 2006.
    11. Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃”, Chemistry of Materials, Vol. 15, pp. 4896-4915, 2003.
    12. M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, P.T. Yu, “Two Fuel Cell Cars In Every Garage, The Electrochemical Society Interface”, Vol. 14, pp. 24-35, 2005.
    13. A.Z. Weber, J. Newman, “Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells”, Journal of the Electrochemical Society, Vol. 153, pp.2205-2214, 2006.
    14. D. Cheddie, N. Munroe, “Mathematical model of a PEM FUEL CELL using a PBI membrane”, Energy Conversion and Management, Vol.47, pp.1490-1504, 2006.
    15. F. Barbir, “PEM Fuel Cells: Theory and Practice”, Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Vol.1-3, 2005.
    16. W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, “Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance”, Renewable Energy, Vol. 35, pp. 656-666, 2010.
    17. R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, “A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole”, Solid State Ionics, Vol. 145, pp. 69-78, 2001.
    18. A.R Maher, A.B Sadiq, “PEM fuel cells: fundamentals, modeling, and applications”, Washington: Create Space Independent Publishing Platform, 2013.
    19. Y. Yin, J.B. Wang, X.L. Yang, Q. Du, J.H. Fang, K. Jiao, “Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes”, Int. J. Hydrogen Energy, Vol. 39, pp. 13671-13680, 2014.
    20. J. Lobato, P. Cañizares, M.A. Rodrigo, F.J. Pinar, D. Ubeda, “Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 196, pp.4209-4217, 2011.
    21. N. Zuliani, R. Taccani, “Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis”, App Energy, Vol. 97, pp. 802-808, 2012.
    22. V. Ionescu, “High temperature PEM fuel cell steady-state transport modeling”, Ovidius University Annals Chem, Vol. 24, pp.55-60, 2013.
    23. P. Chippar, H. Ju, “Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells”, Int. J. Hydrogen Energy, Vol. 38, pp. 7704-7714, 2013.
    24. E.U. Ubong, Z. Shi, X. Wang, “Three-Dimensional Modeling and experimental Study of a High Temperature PBI-Based PEM Fuel Cell”, J. Electrochem. Soc, Vol. 56, pp. 1276-1282, 2009.
    25. Fan Zhou, Søren Juhl Andreasen, Søren Knudsen Kær, Donghong Yu, “Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition”, Int. J. Hydrogen Energy, Vol. 40, pp. 2833-2839, 2015.
    26. S. Thomas, A. Bates, S. Park, A.K. Sahu, S. C. Lee, B. R. Son, J.G. Kim, D.H. Lee, “An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells”, Applied Energy, Vol. 165, pp. 765-776, 2016.
    27. J.L. Zhang, Y. Tang, C. Song, J.J. Zhang, “Polybenzimidazole-membrane-based PEM FUEL CELL in the temperature range of 120-200℃”, J. Power Sources, Vol. 172, pp. 163-171, 2007.
    28. P. Chippar, Kyungmun Kang, Y.D. Lim, W.G. Kim, H. Ju, “Effects of inlet relative humidity (RH) on the performance of a high temperature-proton exchange membrane fuel cell (HT-PEMFC)”, Int. J. Hydrogen Energy, Vol. 39, pp. 2767-2775, 2014.
    29. Dario Bezmalinović, Stephan Strahl, Vicente Roda, Attila Husar, “Water transport study in a high temperature proton exchange membrane fuel cell stack”, Int. J. Hydrogen Energy, Vol. 39, pp. 10627-10640, 2014.
    30. H.W. Gu, H.W. Wu, “Effects of modified flow field on optimal parameters estimation and cell performance of a proton exchange membrane fuel cell with the Taguchi method”, Int. J. Hydrogen Energy, Vol. 37, pp. 1613-1627, 2012.
    31. S.W. Perng, H.W. Wu, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEM FUEL CELL”, App. Energy, Vol 143, pp. 81-95, 2015.
    32. M. Bilgili, M. Bosomoiu, G. Tsotridis, “Gas flow field with obstacles for PEM fuel cells at different operating conditions”, Int. J. Hydrogen Energy, Vol. 40, pp. 2303-2011, 2015.
    33. Justo Lobato, Pablo Cañizares, M.A. Rodrigo, F. Javier Pinar, Esperanza Mena, Diego Úbeda, “Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence”, Int. J. Hydrogen Energy, Vol. 35, pp. 5510-5520, 2010.
    34. H. Heidary, M.J. Kermani, S.G. Advani, A.K. Prasad, “Experimental investigation of in-line and staggered blockages in parallel flow field channels of PEM fuel cells”, Int. J. Hydrogen Energy, Vol. 41, pp. 6885-6893, 2016.
    35. S.K. Das, A. Reis, K.J. Berry, “Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell”, J. Power Sources, Vol. 193, pp. 691-698, 2009.
    36. K. Jiao, X. Li, “A Three-Dimensional Non-Isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid Doped Polybenzimidazole Membranes”, Fuel Cells, Vol. 10, pp. 351-362, 2010.
    37. Diego Úbeda, F.J. Pinar, Pablo Cañizares, M.A. Rodrigo, Justo Lobato, “An easy parameter estimation procedure for modeling a HT-PEMFC”, Int. J. Hydrogen Energy, Vol. 37, pp. 11308-11320, 2012.
    38. K.Y. Chang, H.J. Lin, P.C. Chen, “The optimal performance estimation for an unknown PEM FUEL CELL based on the Taguchi method and a generic numerical PEM FUEL CELL model”, J. Hydrogen Energy, Vol. 34, pp.1900-1998, 2009.
    39. W.L. Yu, S.J. Wu, S.W. Shiah, “Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments”, Int. J. Hydrogen Energy, Vol. 33, pp. 2311-2322, 2008.
    40. W.L. Yu, S.J. Wu, S.W. Shiah, “Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks”, Int. J. Hydrogen Energy, Vol. 35, pp. 11138-11147, 2010.
    41. Süleyman Kaytakoğlu, Levent Akyalçın, “Optimization of parametric performance of a PEM FUEL CELL”, Int. J. Hydrogen Energy, Vol. 32, pp. 4418–4423, 2007.
    42. Y. Zhu, W.H. Zhu, B.J. Tatarchuk, “Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy”, J. Power Sources, Vol. 256, pp. 250-257, 2014.
    43. M.S. Kondratenko, M.O. Gallyamov, A.R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
    44. J.P. Van Doormaal, G.D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1983.
    45. G.J. Park, “Analytic methods for design practice”, Springer Verlag, 2007.
    46. R.B. Abernethy, R.P. Benedict, R.B. Dowdell, “ASME measurement uncertainty, Transactions of the ASME”, J. Fluids Engineering, Vol. 107, pp. 161-164, 1985.
    47. K. Pearson, “On lines and planes of closest fit to systems of points in spaces, Philos”, Mag. Series, Vol. 62, pp. 559-572, 1901.
    48. H. Hotelling, “Analysis of a complex of statistical variables into principal components”, J. Educ. Psychol, Vol. 24, pp. 417-441, 1933.
    49. M.S. Phadke, “Quality engineering using robust design”, Prentice Hall; 1sed, 1989.
    50. G. Taguchi, Y. Yokoyama, Y. Wu, “Taguchi Methods: Design of experiments”, ASI Press, Chicago, 1993.
    51. P.J. Ross, “Taguchi techniques for quality engineering”, McGraw-Hill, New York, 1988.
    52. G. Taguchi, “Quality engineering in production systems”, McGraw-Hill, New York, 1989.
    53. F.C. Wu, “Optimisation of Multiple Quality Characteristics Based on Percentage Reduction of Taguchi’s Quality Loss”, Int. J. Advanced Manufacturing Technology, Vol. 20, pp. 749-753, 2002.
    54.J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nded, John Wiley&Sons Ltd, 2003.
    55. Y.W. Su, “Performance Test and Electrochemical Impedance Spectroscopy/Cyclic Voltammetry for a μPEM Fuel Cell”, Master thesis, National Sun Yat-sen University, 2012
    56. M. Venkatraman, S. Shimpalee, J.W. Van Zee, S.I. Moon, C.W. Extrand, “Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops”, Int. J. Hydrogen Energy, Vol. 34, pp. 5522-5528, 2009.

    下載圖示 校內:2022-08-25公開
    校外:2022-08-25公開
    QR CODE