| 研究生: |
陳藝斌 Chen, Yi-Bin |
|---|---|
| 論文名稱: |
流道內矩形體對高溫型質子交換膜燃料電池性能增益之研究 Study on effect of cuboid in flow channel on performance of high-temperature PEM fuel cells |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 高溫質子交換膜燃料電池 、矩形肋條 、變異數分析 、田口實驗方法 、阻抗分析 |
| 外文關鍵詞: | HTPEM fuel cell, Cuboids, ANOVA, Taguchi method, Impedance analysis |
| 相關次數: | 點閱:117 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文建立三維全流道高溫型質子交換膜燃料電池數值模型,並以單通道研究之最佳肋條間距結果為基礎,於陰陽極流道側邊加裝肋條,並以蛇型全流道基礎下,安排肋條數量皆為10個與在四種不同流道位置組合下探討電池的性能,並得到電池在陰陽極流道於Case II的安排方式下,有最佳的淨功率,其輸出淨功率高於無加裝肋條流道設計約16.55 %。
本文實驗透過田口方法L27直交表針對已加裝肋條之蛇形全流道進行實驗,運用L27直交表的五種操作參數(因子A:電池操作溫度、因子B:陽極入口相對濕度、因子C:陰極入口相對濕度、因子D:陽極化學計量比、因子E:陰極化學計量比),以最少的實驗次數探討相關因子對高溫型單電池的性能影響。實驗最佳結果經由L27直交表實驗組合得知,在操作條件為0.4V時,操作參數組合為A3B3C1D1E3,得到最大淨功率。根據ANOVA分析結果顯示,可發現因子E對電池性能的影響最大,其次是因子A, B;影響最小為因子D。
透過比較Case II與無肋條之蛇型流道奈氏圖,可發現在Case II的流道設計下,有效降低歐姆阻抗及質傳阻抗。在操作電流5A與15A下的阻抗分析結果顯示,電池操作溫度比其他控制因子對歐姆阻抗及總阻抗影響較大。然而,總阻抗則隨著陰極化學計量比增加而降低。當反應氣體供不應求時,將影響功率及總阻抗等電池性能。
This thesis establishes a high-temperature proton exchange membrane (HTPEM) fuel cell numerical model. According to the optimal cuboids spacing result of the single flow channel with the cuboids in both sides of anode and cathode flow channel, the author investigated the different cases by installing 10 cuboids and 4 arranging types in the entire serpentine flow channels. The result indicated that the maximum net electric power occurs at the channel of case II, and it is higher than the net electric power at the smooth-channel design model about 16.55%.
The experiment employs Taguchi methods and the L27 orthogonal array to investigate the effect of inlet relative humidity on the performance of HTPEM fuel cell serpentine flow channel with cuboids. The L27 orthogonal array was conducted by selecting five control factors including temperature of fuel cell (Factor A), anode inlet relative humidity (Factor B), cathode inlet relative humidity (Factor C), the stoichiometric flow ratio of hydrogen (Factor D) and stoichiometric flow ratio of oxygen (Factor E). The influence of relevant factors on the performance of the HTPEM fuel cell was investigated with the least number of experiments. The maximal net electric power of the L27 orthogonal array occurs at the parameter combination of A3B3C1D1E3 with operating voltage 0.4V. The maximum effect is caused by factor E following by A and B, and the minimal impact is caused by factor D.
The author compares Nyquist plots between the case II and smooth-channel design, and found that the case II can decrease ohmic and total impedance. The results of impedance analysis indicate that the operating temperature of fuel cell has the higher impact than other control factors for ohmic and total impedance in the 5A and 15A conditions. However, total impedance is decreased as stoichiometric flow ratio of oxygen increases. The lack of reactive gases has the primary impact on cell performance that includes electric power and total impedance.
1. L.J. Fang, “The book of 2010 energy technique industry”, Bureau of economic, 2010.
2. F.C. Lee, “New energy”, Hsin Wen Ging published corporation, 2009.
3. J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John Wiley Inc, New York, pp.1-418, 2000.
4. J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
5. A.K. Santra, D.W. Goodman, “Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures”, Electrochimica Acta, Vol. 47, pp. 3595-3609, 2002.
6. Q.F. Li, R.H. He, J.A. Gao, J.O. Jensen, N.J. Bjerrum, “The CO poisoning effect in PEM FUEL CELLs operational at temperatures up to 200 degrees C”, Journal of the Electrochemical Society, Vol.150, pp.1599-1605, 2003.
7. P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice, R.I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces and reference to fuel cell catalysis”, Electrochimica Acta, Vol. 47, pp. 3637-3652, 2002.
8. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non Pt oxygen reduction catalysts for PEM FUEL CELLs”, Applied Catalysis B: Environmental, Vol. 56, pp. 9-35, 2005.
9. C. He, S. Desai, G. Brown, S. Bollepalli, “PEM Fuel Cell Catalysts: Cost, Performance, and Durability”, The Electrochemical Society Interface, Vol. 14, pp.41-45, 2005.
10. J.L. Zhang, Z. Xie, J.J. Zhang , Y.H. Tanga, , C.J. Song, T.C. Navessin, Z.Q. Shi, D.T. Song, H.J. Wang, D.P. Wilkinson, Z.S. Liu, S. Holdcroft, “High temperature PEM fuel cells”, J. Power Sources, Vol. 160, pp. 872-891, 2006.
11. Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃”, Chemistry of Materials, Vol. 15, pp. 4896-4915, 2003.
12. M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, P.T. Yu, “Two Fuel Cell Cars In Every Garage, The Electrochemical Society Interface”, Vol. 14, pp. 24-35, 2005.
13. A.Z. Weber, J. Newman, “Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells”, Journal of the Electrochemical Society, Vol. 153, pp.2205-2214, 2006.
14. D. Cheddie, N. Munroe, “Mathematical model of a PEM FUEL CELL using a PBI membrane”, Energy Conversion and Management, Vol.47, pp.1490-1504, 2006.
15. F. Barbir, “PEM Fuel Cells: Theory and Practice”, Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Vol.1-3, 2005.
16. W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, “Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance”, Renewable Energy, Vol. 35, pp. 656-666, 2010.
17. R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, “A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole”, Solid State Ionics, Vol. 145, pp. 69-78, 2001.
18. A.R Maher, A.B Sadiq, “PEM fuel cells: fundamentals, modeling, and applications”, Washington: Create Space Independent Publishing Platform, 2013.
19. Y. Yin, J.B. Wang, X.L. Yang, Q. Du, J.H. Fang, K. Jiao, “Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes”, Int. J. Hydrogen Energy, Vol. 39, pp. 13671-13680, 2014.
20. J. Lobato, P. Cañizares, M.A. Rodrigo, F.J. Pinar, D. Ubeda, “Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 196, pp.4209-4217, 2011.
21. N. Zuliani, R. Taccani, “Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis”, App Energy, Vol. 97, pp. 802-808, 2012.
22. V. Ionescu, “High temperature PEM fuel cell steady-state transport modeling”, Ovidius University Annals Chem, Vol. 24, pp.55-60, 2013.
23. P. Chippar, H. Ju, “Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells”, Int. J. Hydrogen Energy, Vol. 38, pp. 7704-7714, 2013.
24. E.U. Ubong, Z. Shi, X. Wang, “Three-Dimensional Modeling and experimental Study of a High Temperature PBI-Based PEM Fuel Cell”, J. Electrochem. Soc, Vol. 56, pp. 1276-1282, 2009.
25. Fan Zhou, Søren Juhl Andreasen, Søren Knudsen Kær, Donghong Yu, “Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition”, Int. J. Hydrogen Energy, Vol. 40, pp. 2833-2839, 2015.
26. S. Thomas, A. Bates, S. Park, A.K. Sahu, S. C. Lee, B. R. Son, J.G. Kim, D.H. Lee, “An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells”, Applied Energy, Vol. 165, pp. 765-776, 2016.
27. J.L. Zhang, Y. Tang, C. Song, J.J. Zhang, “Polybenzimidazole-membrane-based PEM FUEL CELL in the temperature range of 120-200℃”, J. Power Sources, Vol. 172, pp. 163-171, 2007.
28. P. Chippar, Kyungmun Kang, Y.D. Lim, W.G. Kim, H. Ju, “Effects of inlet relative humidity (RH) on the performance of a high temperature-proton exchange membrane fuel cell (HT-PEMFC)”, Int. J. Hydrogen Energy, Vol. 39, pp. 2767-2775, 2014.
29. Dario Bezmalinović, Stephan Strahl, Vicente Roda, Attila Husar, “Water transport study in a high temperature proton exchange membrane fuel cell stack”, Int. J. Hydrogen Energy, Vol. 39, pp. 10627-10640, 2014.
30. H.W. Gu, H.W. Wu, “Effects of modified flow field on optimal parameters estimation and cell performance of a proton exchange membrane fuel cell with the Taguchi method”, Int. J. Hydrogen Energy, Vol. 37, pp. 1613-1627, 2012.
31. S.W. Perng, H.W. Wu, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEM FUEL CELL”, App. Energy, Vol 143, pp. 81-95, 2015.
32. M. Bilgili, M. Bosomoiu, G. Tsotridis, “Gas flow field with obstacles for PEM fuel cells at different operating conditions”, Int. J. Hydrogen Energy, Vol. 40, pp. 2303-2011, 2015.
33. Justo Lobato, Pablo Cañizares, M.A. Rodrigo, F. Javier Pinar, Esperanza Mena, Diego Úbeda, “Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence”, Int. J. Hydrogen Energy, Vol. 35, pp. 5510-5520, 2010.
34. H. Heidary, M.J. Kermani, S.G. Advani, A.K. Prasad, “Experimental investigation of in-line and staggered blockages in parallel flow field channels of PEM fuel cells”, Int. J. Hydrogen Energy, Vol. 41, pp. 6885-6893, 2016.
35. S.K. Das, A. Reis, K.J. Berry, “Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell”, J. Power Sources, Vol. 193, pp. 691-698, 2009.
36. K. Jiao, X. Li, “A Three-Dimensional Non-Isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid Doped Polybenzimidazole Membranes”, Fuel Cells, Vol. 10, pp. 351-362, 2010.
37. Diego Úbeda, F.J. Pinar, Pablo Cañizares, M.A. Rodrigo, Justo Lobato, “An easy parameter estimation procedure for modeling a HT-PEMFC”, Int. J. Hydrogen Energy, Vol. 37, pp. 11308-11320, 2012.
38. K.Y. Chang, H.J. Lin, P.C. Chen, “The optimal performance estimation for an unknown PEM FUEL CELL based on the Taguchi method and a generic numerical PEM FUEL CELL model”, J. Hydrogen Energy, Vol. 34, pp.1900-1998, 2009.
39. W.L. Yu, S.J. Wu, S.W. Shiah, “Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments”, Int. J. Hydrogen Energy, Vol. 33, pp. 2311-2322, 2008.
40. W.L. Yu, S.J. Wu, S.W. Shiah, “Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks”, Int. J. Hydrogen Energy, Vol. 35, pp. 11138-11147, 2010.
41. Süleyman Kaytakoğlu, Levent Akyalçın, “Optimization of parametric performance of a PEM FUEL CELL”, Int. J. Hydrogen Energy, Vol. 32, pp. 4418–4423, 2007.
42. Y. Zhu, W.H. Zhu, B.J. Tatarchuk, “Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy”, J. Power Sources, Vol. 256, pp. 250-257, 2014.
43. M.S. Kondratenko, M.O. Gallyamov, A.R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
44. J.P. Van Doormaal, G.D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1983.
45. G.J. Park, “Analytic methods for design practice”, Springer Verlag, 2007.
46. R.B. Abernethy, R.P. Benedict, R.B. Dowdell, “ASME measurement uncertainty, Transactions of the ASME”, J. Fluids Engineering, Vol. 107, pp. 161-164, 1985.
47. K. Pearson, “On lines and planes of closest fit to systems of points in spaces, Philos”, Mag. Series, Vol. 62, pp. 559-572, 1901.
48. H. Hotelling, “Analysis of a complex of statistical variables into principal components”, J. Educ. Psychol, Vol. 24, pp. 417-441, 1933.
49. M.S. Phadke, “Quality engineering using robust design”, Prentice Hall; 1sed, 1989.
50. G. Taguchi, Y. Yokoyama, Y. Wu, “Taguchi Methods: Design of experiments”, ASI Press, Chicago, 1993.
51. P.J. Ross, “Taguchi techniques for quality engineering”, McGraw-Hill, New York, 1988.
52. G. Taguchi, “Quality engineering in production systems”, McGraw-Hill, New York, 1989.
53. F.C. Wu, “Optimisation of Multiple Quality Characteristics Based on Percentage Reduction of Taguchi’s Quality Loss”, Int. J. Advanced Manufacturing Technology, Vol. 20, pp. 749-753, 2002.
54.J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nded, John Wiley&Sons Ltd, 2003.
55. Y.W. Su, “Performance Test and Electrochemical Impedance Spectroscopy/Cyclic Voltammetry for a μPEM Fuel Cell”, Master thesis, National Sun Yat-sen University, 2012
56. M. Venkatraman, S. Shimpalee, J.W. Van Zee, S.I. Moon, C.W. Extrand, “Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops”, Int. J. Hydrogen Energy, Vol. 34, pp. 5522-5528, 2009.