| 研究生: |
王嘉慧 Wang, Jia-Huei |
|---|---|
| 論文名稱: |
藉由RNA干擾、蛋白合成抑制及突變株篩選改善橙黃壺菌L-BL10品系脂肪酸組成 Manipulation of fatty acid composition in Aurantiochytrium sp. strain L-BL10 through RNA interference, protein synthesis inhibition and mutagenesis |
| 指導教授: |
陳逸民
Chen, Yi-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 橙黃壺菌L-BL10品系 、22碳6烯酸 、棕櫚酸 、脂肪酸合成酶 、RNA干擾 、突變 |
| 外文關鍵詞: | Aurantiochytrium sp. strain L-BL10, docosahexaenoic acid, palmitic acid, fatty acid synthase, RNA interference, mutagenesis |
| 相關次數: | 點閱:132 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aurantiochytrium sp. strain L-BL10為一富含22碳6烯酸 (docosahexaenoic acid, DHA) 的海洋原生生物,其DHA含量可達乾重的18 %,然也連帶產生高量的棕櫚酸 (palmitic acid, PA),PA為一種有引起心血管疾病疑慮的長鏈飽和脂肪酸,對於藻油產品的健康訴求將產生負面影響。添加cerulenin,一種fatty acid synthase (FAS) 抑制劑的作法,可有效降低L-BL10細胞中PA的含量,然因其為高單價之抗生素並無法實際應用在工業級量產中。
因此,本研究的目的在於評估利用RNA干擾、FAS蛋白質生產抑制及突變株篩選的方式,達到降低PA產量的目的。在RNA干擾部分,首先針對L-BL10的FAS基因進行定序,再利用其序列設計real-time PCR及合成dsRNA之引子。接著利用real-time PCR分析FAS基因的表現趨勢,並挑選適合之處理時間點後,處理由T7 RiboMAX™ Express RNAi System合成之dsRNA,期望可有效抑制FAS基因表現,進而降低PA之產量。在FAS蛋白質產量抑制部分,則是於上述適合之處理時間點處理morpholino以抑制蛋白質產量。而在突變株篩選的部分,首先檢測致變劑MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) 的施用劑量後,再利用GC/MS分析突變株之油質組成,挑選出PA產量較低的突變株。
在RNA干擾實驗部分目前已完成L-BL10之FAS 定序,長度為13242 bp,屬於type Ia FAS中的bacteral FAS,其基因表現量在細胞之對數成長後期,也就是PA大量累積前8~10個小時會開始大量表現。進一步也確立將dsRNA送入藻細胞之條件,但在送入fas dsRNA測試中,發現並無法有效抑制fas之表現,推測可能本次設計之dsRNA片段無法激起RNA干擾反應,抑或是L-BL10並不具有RNA干擾之機制。於FAS蛋白質抑制測試中,發現其轉染效率僅0.2 %,需進一步針對轉染法進行修改以供抑制測試。而在突變株篩選的實驗中,在處理0.1 mg/ml MNNG的情況下,細胞存活率為1.35 %,選取本劑量進行致變處理,由此所獲得的150株品系,初步篩選之中發現有5株PA比率明顯較低,進一步確認後發現其中以編號M48之突變株下降比率最高,證明致變劑處理的方式確實有機會降低L-BL10的PA含量。
Aurantiochytrium sp. L-BL10, an oleaginous microalgal strain rich in DHA, is a promising candidate for the production of vegetative DHA. The sole concern limiting the use of L-BL10 is the co-existence of palmitic acid (PA), an undesirable fatty acid which counteracts the human health effects of DHA. In the past, PA production was reduced through treatment with cerulenin, an inhibitor of fatty acid synthase. Unfortunately, cerulenin is an antibiotic that can negatively affect food safety.
The purpose of this research was to reduce PA production in L-BL10 through RNA interference (RNAi) of the fatty acid synthase gene (fas), inhibits the synthesis of fatty acid synthase (FAS) proteins and mutagenesis. In this study, we first sequenced fas and then designed real-time PCR primers in order to analyze gene expression patterns over various durations following incubation. These results provided a foundation for the following investigation. After ascertaining the appropriate timing, we conducted RNAi analysis on fas dsRNA and treated this gene with morpholino in order to inhibit FAS protein synthesis. For mutagenesis, we first determined the correct dose of MNNG mutagen and then treated L-BL10 with MNNG to obtain mutant lines. The fatty acid composition of the mutant lines was analyzed using GC/MS.
fas sequencing was completed to a length of 13257 bps. fas expression was up-regulated after 16 hrs of incubation, representing the late logarithmic phase of cell growth. At this point, dsRNA was combined with Lipofetamine to induce RNA interference; however, these treatments did not significantly inhibit FAS gene expression. Regarding the inhibition of protein synthesis, the efficiency of transfection was found to be only 0.2 %. In order to facilitate inhibition tests, it would be necessary to modify the conditions of transfection. Regarding mutagenesis, a concentration of 0.68 mM MNNG caused a 1.35 % reduction in cell survival rate. Under these conditions, we selected 150 lines of mutant strains, 5 of which were identified as having low PA accumulation compared with the original line. In the mutant line M48, the reduced PA ratio was as high as 8.38 %. These results suggest that mutagenesis has the potential to reduce PA production.
Agaba, M. K., Tocher, D. R., Zheng, X. Z., Dickson, C. A., Dick, J. R., & Teale, A. J. (2005). Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 142. p. 342-52
Berge, J. P., & Barnathan, G. (2005). Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Marine Biotechnology I, 96. p. 49-125
Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., Lukomska, E., Le Coz, J. R., & Cadoret, J. P. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnol Bioeng, 109. p. 2737-45
Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3. p. 529-54
Breckenridge, W. C., Gombos, G., & Morgan, I. G. (1972). The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta, 266. p. 695-707
Brennan, P. J., & Nikaido, H. (1995). The envelope of mycobacteria. Annu Rev Biochem, 64. p. 29-63
Chaung, K. C., Chu, C. Y., Su, Y. M., & Chen, Y. M. (2012). Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express, 2. p. 42
Coste, T. C., Gerbi, A., Vague, P., Pieroni, G., & Raccah, D. (2003). Neuroprotective effect of docosahexaenoic acid-enriched phospholipids in experimental diabetic neuropathy. Diabetes, 52. p. 2578-85
De Swaaf, M. E., Sijtsma, L., & Pronk, J. T. (2003). High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng, 81. p. 666-72
De Vriese, S. R., Christophe, A. B., & Maes, M. (2003). Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: further evidence that lowered n-PUFAs are related to major depression. Life Sci, 73. p. 3181-7
Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev, 3. p. 198-203
el Boustani, S., Colette, C., Monnier, L., Descomps, B., Crastes de Paulet, A., & Mendy, F. (1987). Enteral absorption in man of eicosapentaenoic acid in different chemical forms. Lipids, 22. p. 711-4
Fassett, R. G., & Coombes, J. S. (2011). Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs, 9. p. 447-65
Fattore, E., & Fanelli, R. (2013). Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. Int J Food Sci Nutr, 5. p. 648-59
Feinberg, E. H., & Hunter, C. P. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301. p. 1545-47
Flavin, R., Peluso, S., Nguyen, P. L., & Loda, M. (2010). Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 6. p. 551-62
Ganga, A., Nieto, S., Sanhuez, J., Romo, C., Speisky, H., & Valenzuela, A. (1998). Concentration and stabilization of n-3 polyunsaturated fatty acids from sardine oil. Journal of the American Oil Chemists Society, 75. p. 733-36
Gichner, T., & Veleminsky, J. (1982). Genetic-Effects of N-Methyl-N'-Nitro-N-Nitrosoguanidine and Its Homologs. Mutation research, 99. p. 129-242
Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker, B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., Berlin, A. M., Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A., Nusbaum, C., Lander, E. S., & Jaffe, D. B. (2011). High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A, 108. p. 1513-8
Grima, E. M., Perez, J. A. S., Camacho, F. G., Sanchez, J. L. G., & Alonso, D. L. (1993). N-3 Pufa Productivity in Chemostat Cultures of Microalgae. Applied Microbiology and Biotechnology, 38. p. 599-605
Hannon, G. J. (2002). RNA interference. Nature, 418. p. 244-51
Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91. p. 679-84
Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., & Metz, J. G. (2006). Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41. p. 739-47
Hazel, J. R. (1984). Effects of temperature on the structure and metabolism of cell membranes in fish. Am J Physiol, 246. p. R460-70
He, K. (2009). Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease--eat fish or take fish oil supplement? Prog Cardiovasc Dis, 52. p. 95-114
Heath, R. J., White, S. W., & Rock, C. O. (2001). Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res, 40. p. 467-97
Holub, B. J. (2009). Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot Essent Fatty Acids, 81. p. 199-204
Iskandarov, U., Khozin-Goldberg, I., & Cohen, Z. (2011). Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl Microbiol Biotechnol, 90. p. 249-56
Jarup, L. (2003). Hazards of heavy metal contamination. Br Med Bull, 68. p. 167-82
Jenke-Kodama, H., & Dittmann, E. (2009). Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry, 70. p. 1858-66
Jenke-Kodama, H., Sandmann, A., Muller, R., & Dittmann, E. (2005). Evolutionary implications of bacterial polyketide synthases. Molecular biology and evolution, 22. p. 2027-39
Kidd, P. (2011). Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev, 16. p. 355-64
Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 87. p. 1228-32
Lawson, L. D., & Hughes, B. G. (1988). Human Absorption of Fish Oil Fatty-Acids as Triacylglycerols, Free Acids, or Ethyl-Esters. Biochemical and Biophysical Research Communications, 152. p. 328-35
Lee, Y. K. (2001). Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 13. p. 307-15
Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res, 106. p. 155-77
Leon, R., & Fernandez, E. (2007). Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv Exp Med Biol, 616. p. 1-11
Letunic, I., Doerks, T., & Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 40. p. D302-D05
Levenson, C. W., & Axelrad, D. M. (2006). Too much of a good thing? Update on fish consumption and mercury exposure. Nutr Rev, 64. p. 139-45
Lian, M., Huang, H., Ren, L. J., Ji, X. J., Zhu, J. Y., & Jin, L. J. (2010). Increase of Docosahexaenoic Acid Production by Schizochytrium sp Through Mutagenesis and Enzyme Assay. Applied Biochemistry and Biotechnology, 162. p. 935-41
Ma, Y. G., Lindsey, M. L., & Halade, G. V. (2012). DHA derivatives of fish oil as dietary supplements: a nutrition-based drug discovery approach for therapies to prevent metabolic cardiotoxicity. Expert Opinion on Drug Discovery, 7. p. 711-21
Meireles, L. A., Guedes, A. C., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng, 81. p. 50-55
Menendez, J. A., Vellon, L., Colomer, R., & Lupu, R. (2005). Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer, 115. p. 19-35
Moore, S. A., Hurt, E., Yoder, E., Sprecher, H., & Spector, A. A. (1995). Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res, 36. p. 2433-43
Mount, D. W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc. p. pdb.top17.
Neill, A. R., & Masters, C. J. (1973). Metabolism of fatty acids by ovine spermatozoa. J Reprod Fertil, 34. p. 279-87
Nichols, D. S. (2003). Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol Lett, 219. p. 1-7
Omura, S. (1976). The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev, 40. p. 681-97
Omura, S., Katagiri, M., Nakagawa, A., Sano, Y., & Nomura, S. (1967). Studies on cerulenin. V. Structure of cerulenin. The Journal of antibiotics, 20. p. 349-54
Qiu, X. (2003). Biosynthesis of docosahexaenoic acid (DHA, 22 : 6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukotrienes and Essential Fatty Acids, 68. p. 181-86
Raghukumar, S. (1992). Bacterivory: a Novel Dual Role for Thraustochytrids in the Sea. Marine Biology, 113. p. 165-69
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86. p. 807-15
Riediger, N. D., Othman, R. A., Suh, M., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc, 109. p. 668-79
Sakaguchi, K., Matsuda, T., Kobayashi, T., Ohara, J., Hamaguchi, R., Abe, E., Nagano, N., Hayashi, M., Ueda, M., Honda, D., Okita, Y., Taoka, Y., Sugimoto, S., Okino, N., & Ito, M. (2012). Versatile Transformation System That Is Applicable to both Multiple Transgene Expression and Gene Targeting for Thraustochytrids. Applied and Environmental Microbiology, 78. p. 3193-202
Schweizer, E., & Hofmann, J. (2004). Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev, 68. p. 501-17, table of contents
Serhan, C. N., Arita, M., Hong, S., & Gotlinger, K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids, 39. p. 1125-32
Servel, M. O., Claire, C., Derrien, A., Coiffard, L., & Deroeckholtzhauer, Y. (1994). Fatty-Acid Composition of Some Marine Microalgae. Phytochemistry, 36. p. 691-93
Shrey, K., Suchit, A., Nishant, M., & Vibha, R. (2009). RNA interference: emerging diagnostics and therapeutics tool. Biochem Biophys Res Commun, 386. p. 273-7
Singh, S., Kate, B. N., & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol, 25. p. 73-95
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. J Biosci Bioeng, 101. p. 87-96
Stancheva, I., Collins, A. L., Van den Veyver, I. B., Zoghbi, H., & Meehan, R. R. (2003). A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Molecular Cell, 12. p. 425-35
Stillwell, W., & Wassall, S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids, 126. p. 1-27
Tassoni, D., Kaur, G., Weisinger, R. S., & Sinclair, A. J. (2008). The role of eicosanoids in the brain. Asia Pac J Clin Nutr, 17 Suppl 1. p. 220-8
Uauy, R., Hoffman, D. R., Peirano, P., Birch, D. G., & Birch, E. E. (2001). Essential fatty acids in visual and brain development. Lipids, 36. p. 885-95
Viso, A. C., & Marty, J. C. (1993). Fatty-Acids from 28 Marine Microalgae. Phytochemistry, 34. p. 1521-33
Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 40. p. 3627-52
Wiegand, R. D., & Anderson, R. E. (1983). Phospholipid molecular species of frog rod outer segment membranes. Exp Eye Res, 37. p. 159-73
Wille, W., Eisenstadt, E., & Willecke, K. (1975). Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrob Agents Chemother, 8. p. 231-7
Xi, H. L., Yu, Y., Fu, Y. T., Foley, J., Halees, A., & Weng, Z. P. (2007). Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. Genome Research, 17. p. 798-806
Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the American Oil Chemists Society, 74. p. 1431-34
Yamamura, R., & Shimomura, Y. (1997). Industrial high-performance liquid chromatography purification of docosahexaenoic acid ethyl ester and docosapentaenoic acid ethyl ester from single-cell oil. Journal of the American Oil Chemists Society, 74. p. 1435-40
Yang, H. L., Lu, C. K., Chen, S. F., & Chen, Y. M. (2010). Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol, 12. p. 173-85
Zhang, M. J., & Spite, M. (2012). Resolvins: Anti-Inflammatory and Proresolving Mediators Derived from Omega-3 Polyunsaturated Fatty Acids. Annual Review of Nutrition, 32. p. 203-28
Zuta, C. P., Simpson, B. K., Chan, H. M., & Phillips, L. (2003). Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists Society, 80. p. 933-36
劉致寧 (2013). 橙黃壺菌L-BL10品系之聚酮合成酶基因序列與表現分析. 碩士論文. 成功大學.
莊凱荃 (2011). 培養條件對Aurantiochytrium sp. BL10之DHA產量及脂肪酸組成的影響. 碩士論文. 成功大學.