簡易檢索 / 詳目顯示

研究生: 許凱智
Hsu, Kai-Chih
論文名稱: 奈米粒子沉積之還原氧化石墨烯的製備與應用
Preparation and applications of nanoparticles-deposited reduced graphene oxide
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 179
中文關鍵詞: 銀奈米粒子還原氧化石墨烯觸媒綠色合成共乘效應微波表面增強拉曼散射基材均勻性二氧化鈦奈米粒子再使用性靈敏度光催化
外文關鍵詞: Silver nanoparticles, Reduced graphene oxide, Catalyst, Green synthesis, Synergistic effect, Microwave, SERS substrate, Uniformity, Titanium dioxide nanoparticles, Reusable, Sensitivity, Photocatalysis.
相關次數: 點閱:147下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,石墨烯因其優異的物理、化學和電子特性,在各種應用中作為關鍵的材料或基材。此外,而其衍生物氧化石墨烯(GO)和還原氧化石墨烯(rGO),已經被廣泛地作為製造複合材料的起始材料,因為製造成本低廉並可大規模生產,豐富的含氧官能基也使其易進行官能化改質。
    本論文可分為四個主題: 1.銀/還原氧化石墨烯(Ag/rGO)奈米複合材料的綠色合成與其共乘催化效應。2.微波輔助綠色製程製備銀/還原氧化石墨烯(Ag/rGO)奈米複合材料作為高均勻性表面增強拉曼散射(SERS)基材。3.銀/二氧化鈦/還原氧化石墨烯(Ag/TiO2/rGO)奈米複合材料的製備與作為可再使用、高靈敏性與均勻性的表面增強拉曼散射(SERS)基材。4.二氧化鈦/還原氧化石墨烯(TiO2/rGO)複合材料的一步溶熱合成與作為可見光光觸媒。
    在第一個主題中,因為其高比表面積與還原氧化石墨烯的共乘效應,Ag/rGO奈米複合材料已被發展作為觸媒於催化硼氫化鈉還原對硝基苯酚為對胺基苯酚。使用精胺酸為還原劑,以便利快速的微波輔助綠色製程使銀奈米粒子與氧化石墨烯同時被還原。銀金屬在製備出的Ag/rGO奈米複合材料約佔51wt%,而沉積在還原氧化石墨烯的銀奈米粒子之平均粒徑約8.6 ± 3.5奈米。此外, Ag/rGO奈米複合材料作為觸媒於催化硼氫化鈉還原對硝基苯酚為對胺基苯酚的系統中具有傑出的催化活性和穩定性。其催化反應之擬一階動力式顯示其反應速率常數隨著反應環境溫度、觸媒量與對硝基苯酚初濃度增加而上升,說明還原氧化石墨烯藉由共乘效應(synergistic effect)可以提升觸媒的催化活性。藉由Ag/rGO奈米複合材料,硼氫化鈉還原對硝基苯酚為對胺基苯酚在液相與固相中的催化反應之機制亦被提出。
    在第二個主題中,因為還原氧化石墨烯的高比表面積與二維的網狀結構, Ag/rGO奈米複合材料被應用為SERS基材。使用精胺酸為還原劑,以便利快速的微波輔助綠色製程使銀奈米粒子均勻地成長並與氧化石墨烯同時被還原。藉由1次、4次與8次的微波次數,沉積在還原氧化石墨烯表面的銀奈米粒子的粒徑分別是10.3 ± 4.6、21.4 ± 10.5與41.1 ± 12.6奈米。Ag/rGO奈米複合材料的SERS特性可藉由使用常見的拉曼分子4-氨基苯硫酚(4-ATP)來測定。從結果可發現透過增加沉積在氧化石墨烯上的銀奈米粒子的尺寸與含量,4-ATP的拉曼訊號可以被顯著地提升。雖然還原氧化石墨烯的拉曼訊號也同時地被銀奈米粒子提升,進而限制了SERS偵測靈敏度的改善,4-ATP的偵測極限仍可達到10−10 M,其增強因子(EF)高達1.27 × 1010,且相對標準偏差(RSD)低於5%以下。這些結果證明了Ag/rGO奈米複合材料可作為高均勻性與靈敏度之表面增強拉曼散射(SERS)基材。
    在第三個主題中,為了解決在第二個主題中遇到的難題,透過使用TiO2作為中間層去消除還原氧化石墨烯D-band和G-band拉曼訊號的干擾,Ag/TiO2/rGO 奈米複合材料被作為一個更強力並具有高靈敏性與均勻性的SERS基材。4-ATP的偵測極限可從10−10 M降低到10−14 M,且同時RSD值仍可保持低於10%以下。結果可以說明使用TiO2作為中間層去抑制銀奈米粒子對於還原氧化石墨烯的SERS效應是有效的。此外,透過紫外光的照射與TiO2的光催化特性,4-ATP的拉曼訊號可以被消除,進而使此基材可以再使用,經過五次的再使用後,Ag/TiO2/rGO 奈米複合材料仍具有傑出的SERS表現,因此,本研究製備出的Ag/TiO2/rGO奈米複合材料可作為具有再使用、高靈敏性與均勻性的表面增強拉曼散射(SERS)基材。
    在第四個主題中,TiO2/rGO複合材料可透過一步溶熱法來合成,而TiO2奈米粒子可以均勻的沉積在還原氧化石墨烯的表面上。實驗結果證明TiO2/rGO複合材料具有比TiO2奈米粒子更好的光催化活性。TiO2與還原氧化石墨烯的結合不僅吸收光譜延伸至可見光的區域和使TiO2的能隙變小,也可促進TiO2照光後產生的電子轉移到還原氧化石墨烯上,進而使電子電洞分離。因此,本研究製備出的TiO2/rGO複合材料具有良好的光催化活性並可以被期待應用在有機汙染物的處理中。

    Recently, graphene has emerged as a key material or support for the various applications owing to its excellent physical, chemical and electronic properties. As the derivatives of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) are widely used as starting materials for the fabrication of composites due to their low-cost property, large scale production and easy functionalization owing to the many reactive oxygenated functional groups.
    This dissertation includes four parts: 1. Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite; 2. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity; 3. Fabrication of Ag/TiO2/reduced graphene oxide nanocomposite as a reusable surface-enhanced Raman scattering substrate with high sensitivity and uniformity; 4. One-step solvothermal synthesis of TiO2/reduced graphene oxide composite as a visible light photocatalyst.
    In the first part, a nanocomposite of silver nanoparticles and reduced graphene oxide (Ag/rGO) has been developed as a catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with sodium borohydride, owing to the larger specific surface area and synergistic effect of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. The resulting Ag/rGO nanocomposite contained about 51 wt% of Ag, and the Ag nanoparticles deposited on the surface of rGO had a mean diameter of 8.6 ± 3.5 nm. Also, the Ag/rGO nanocomposite exhibited excellent catalytic activity and stability toward the reduction of 4-NP to 4-AP with sodium borohydride. The reduction reaction obeyed the pseudo-first-order kinetics. The rate constants increased not only with the increase of temperature and catalyst amount but also with the increase of initial 4-NP concentration, revealing that the support rGO could enhance the catalytic activity via a synergistic effect. A mechanism for the catalytic reduction of 4-NP with NaBH4 by Ag/rGO nanocomposite via both the liquid-phase and solid-phase routes has been suggested.
    In the second part, Ag/rGO composites are applied as surface-enhanced Raman scattering (SERS) substrates owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the uniform deposition of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10−10 M and the enhancement factor could be increased to 1.27 × 1010. Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.
    In the third part, to solve the problem we met in the second part, Ag/TiO2/rGO nanocomposite was developed as a more powerful SERS substrate with high sensitivity and uniformity by using TiO2 intermediate layer to diminish the interference from the Raman intensities of D-band and G-band of rGO. The detectable limit of 4-ATP could be further lowered from 10-10 M to 10-14 M. In the meanwhile, the RSD values remained below 10%. This revealed that the strategy using TiO2 intermediate layer to restrain the enhancement effect of Ag nanoparticles on the SERS intensity of rGO is indeed effective. Moreover, by UV irradiation in water, the photocatalytic property of TiO2 could eliminate the Raman signal of 4-ATP efficiently and made this substrate reusable. After reuse for 5 times, the excellent SERS performance of Ag/TiO2/rGO nanocomposite was retained. Accordingly, the Ag/TiO2/rGO nanocomposite developed in this work could be excellent candidates as a reusable SERS substrate with outstanding sensitivity and uniformity.
    In the fourth part, a composite of titanium dioxide nanoparticles and reduced graphene oxide (TiO2/rGO) have been prepared via a one-step solvothermal process of titanium(IV) butoxide and GO in the mixed solution of ethylene glycol and water. TiO2 nanoparticles could be deposited uniformly on the surface of rGO. The result revealed that TiO2/rGO composites possessed enhanced photocatalytic activities than pure TiO2 nanoparticles. The incorporation of rGO not only could extend the absorption to the visible light region and narrow the band gap of TiO2 nanoparticles, but also could facilitate the electron transfer from TiO2 nanoparticles to rGO and lead to the separation of the photogenerated electron-hole pairs. Hence, the resulting TiO2/rGO composites exhibited enhanced photocatalytic performance and were expected to be useful in the treatment of organic pollutants.

    中文摘要 i Abstract iv 誌謝 viii Contents x List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Introduction of graphene and graphene oxide 1 1.1.1 Introduction of graphene 1 1.1.2 Introduction of graphene oxide 3 1.1.3 Syntheses of graphene and graphene oxide 7 1.2 Catalyst 12 1.3 Surface enhanced Raman scattering (SERS) 15 1.3.1 Introduction of Raman spectroscopy 15 1.3.2 Surface enhanced Raman scattering (SERS) 18 1.3.3 SERS applications 22 1.4 Photocatalyst 30 1.5 Reduced graphene oxide-based materials for catalysts, SERS and photocatalysts 33 1.6 Motivation 45 Chapter 2 Fundamental theory 47 2.1 Catalysis theory 47 2.2 SERS theory 53 2.2.1 Raman scattering 53 2.2.2 Surface enhanced Raman scattering 58 2.2.3 Surface plasmon resonance 63 2.2.4 Raman spectroscopy of graphene 66 2.3 Photocatalysis theory 68 Chapter 3 Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite 73 3.1 Introduction 73 3.2 Experimental 75 3.2.1 Materials 75 3.2.2 Preparation of GO 76 3.2.3 Microwave-assisted synthesis of Ag/rGO nanocomposite. 76 3.2.4 Characterization 77 3.2.5 Catalytic reduction of 4-nitrophenol 77 3.3 Results and discussion 78 3.4 Conclusions 94 Chapter 4 Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity 95 4.1 Introduction 95 4.2 Experimental 98 4.2.1 Materials 98 4.2.2 Microwave-assisted green synthesis of Ag/rGO nanocomposite. 98 4.2.3 Characterization 99 4.2.4 SERS property of Ag/rGO nanocomposite 100 4.3 Results and discussion 100 4.4 Conclusions 113 Chapter 5 Fabrication of Ag/TiO2/reduced graphene oxide nanocomposite as a reusable surface-enhanced Raman scattering substrate with high sensitivity and uniformity 114 5.1 Introduction 114 5.2 Experimental 117 5.2.1 Materials 117 5.2.2 Fabrication of Ag/TiO2/rGO nanocomposite 117 5.2.3 Characterization 118 5.2.4 SERS measurement of Ag/TiO2/rGO nanocomposite 119 5.3 Results and discussion 120 5.4 Conclusions 131 Chapter 6 One-step solvothermal synthesis of TiO2/reduced graphene oxide composite as a visible light photocatalyst 132 6.1 Introduction 132 6.2 Experimental 134 6.2.1 Materials 134 6.2.2 Preparation of TiO2/rGO composites. 135 6.2.3 Photocatalytic experiment 135 6.2.4 Characterization 136 6.3 Results and discussion 137 6.4 Conclusions 146 Chapter 7 Overall conclusions 147 References 149 Curriculum vitae 177

    1. P. Avouris, Z. Chen and V. Perebeinosr, Carbon-based electronics, Nat. Nanotechnol., 2007, 2, 605-615.
    2. A. K. Geim and K. S. Novoselovr, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
    3. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalleyr, C-60 - buckminsterfullerene, Nature, 1985, 318, 162-163.
    4. S. Iijimar, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
    5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsovr, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
    6. C. Lee, X. D. Wei, J. W. Kysar and J. Honer, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385-388.
    7. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoffr, Graphene-based ultracapacitors, Nano Lett., 2008, 8, 3498-3502.
    8. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Laur, Superior thermal conductivity of single-layer graphene, Nano Lett., 2008, 8, 902-907.
    9. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geimr, Fine structure constant defines visual transparency of graphene, Science, 2008, 320, 1308-1308.
    10. J. Moser, A. Barreiro and A. Bachtoldr, Current-induced cleaning of graphene, Appl. Phys. Lett., 2007, 91, 163513.
    11. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kimr, A roadmap for graphene, Nature, 2012, 490, 192-200.
    12. X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. F. Liur, Can graphene be used as a substrate for Raman enhancement?, Nano Lett., 2010, 10, 553-561.
    13. S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong and J. M. Namr, UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering, ACS Nano, 2011, 5, 9799-9806.
    14. C. C. Huang, C. Li and G. Q. Shir, Graphene based catalysts, Energ. Environ. Sci., 2012, 5, 8848-8868.
    15. Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong and H. J. Dair, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 2011, 133, 7296-7299.
    16. Y. B. Tan and J. M. Leer, Graphene for supercapacitor applications, J. Mater. Chem. A, 2013, 1, 14814-14843.
    17. M. F. El-Kady, V. Strong, S. Dubin and R. B. Kanerr, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 2012, 335, 1326-1330.
    18. S. R. Sun, L. Gao and Y. Q. Liur, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett., 2010, 96, 083113.
    19. X. Wang, L. J. Zhi and K. Mullenr, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, 8, 323-327.
    20. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honmar, Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 2008, 8, 2277-2282.
    21. H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui and H. J. Dair, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries, J. Am. Chem. Soc., 2010, 132, 13978-13980.
    22. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselovr, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 2007, 6, 652-655.
    23. C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska and L. Niur, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Anal. Chem., 2009, 81, 2378-2382.
    24. B. Li, X. H. Cao, H. G. Ong, J. W. Cheah, X. Z. Zhou, Z. Y. Yin, H. Li, J. L. Wang, F. Boey, W. Huang and H. Zhangr, All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes, Adv. Mater., 2010, 22, 3058-3061.
    25. X. Y. Qi, K. Y. Pu, H. Li, X. Z. Zhou, S. X. Wu, Q. L. Fan, B. Liu, F. Boey, W. Huang and H. Zhangr, Amphiphilic graphene composites, Angew. Chem. Int. Edit., 2010, 49, 9426-9429.
    26. J. Q. Liu, Z. Y. Yin, X. H. Cao, F. Zhao, A. P. Lin, L. H. Xie, Q. L. Fan, F. Boey, H. Zhang and W. Huangr, Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes, ACS Nano, 2010, 4, 3987-3992.
    27. Q. Y. He, H. G. Sudibya, Z. Y. Yin, S. X. Wu, H. Li, F. Boey, W. Huang, P. Chen and H. Zhangr, Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications, ACS Nano, 2010, 4, 3201-3208.
    28. X. Y. Qi, K. Y. Pu, X. Z. Zhou, H. Li, B. Liu, F. Boey, W. Huang and H. Zhangr, Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents, Small, 2010, 6, 663-669.
    29. Z. Y. Yin, S. X. Wu, X. Z. Zhou, X. Huang, Q. C. Zhang, F. Boey and H. Zhangr, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, Small, 2010, 6, 307-312.
    30. G. Eda and M. Chhowallar, Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics, Adv. Mater., 2010, 22, 2392-2415.
    31. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang and H. J. Dair, Highly conducting graphene sheets and langmuir-blodgett films, Nat. Nanotechnol., 2008, 3, 538-542.
    32. R. Ruoffr, Calling all chemists, Nat. Nanotechnol., 2008, 3, 10-11.
    33. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoffr, The chemistry of graphene oxide, Chem. Soc. Rev., 2010, 39, 228-240.
    34. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis and I. Dekanyr, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 2006, 18, 2740-2749.
    35. W. Gao, L. B. Alemany, L. J. Ci and P. M. Ajayanr, New insights into the structure and reduction of graphite oxide, Nat. Chem., 2009, 1, 403-408.
    36. O. C. Compton and S. T. Nguyenr, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small, 2010, 6, 711-723.
    37. H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksayr, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, 2006, 110, 8535-8539.
    38. Y. Si and E. T. Samulskir, Synthesis of water soluble graphene, Nano Lett., 2008, 8, 1679-1682.
    39. K. Jasuja and V. Berryr, Implantation and growth of dendritic gold nanostructures on graphene derivatives: Electrical property tailoring and Raman enhancement, ACS Nano, 2009, 3, 2358-2366.
    40. X. Z. Zhou, X. Huang, X. Y. Qi, S. X. Wu, C. Xue, F. Y. C. Boey, Q. Y. Yan, P. Chen and H. Zhangr, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces, J. Phys. Chem. C, 2009, 113, 10842-10846.
    41. Z. Y. Ji, X. P. Shen, G. X. Zhu, H. Zhou and A. H. Yuanr, Reduced graphene oxide/nickel nanocomposites: Facile synthesis, magnetic and catalytic properties, J. Mater. Chem., 2012, 22, 3471-3477.
    42. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowallar, Atomic and electronic structure of graphene-oxide, Nano Lett., 2009, 9, 1058-1063.
    43. S. Park and R. S. Ruoffr, Chemical methods for the production of graphenes, Nat. Nanotechnol., 2009, 4, 217-224.
    44. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Leer, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater., 2009, 19, 1987-1992.
    45. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoffr, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, 45, 1558-1565.
    46. H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen and Z. Z. Yur, Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide, J. Mater. Chem., 2011, 21, 5392-5397.
    47. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallacer, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 2008, 3, 101-105.
    48. L. J. Cote, F. Kim and J. Huangr, Langmuir-blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc., 2009, 131, 1043-1049.
    49. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts and R. S. Ruoffr, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater., 2010, 22, 3906-3924.
    50. N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan and Q. Yanr, Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano, 2011, 5, 2749-2755.
    51. P. W. Sutter, J. I. Flege and E. A. Sutterr, Epitaxial graphene on ruthenium, Nat. Mater., 2008, 7, 406-411.
    52. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoffr, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, 324, 1312-1314.
    53. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hongr, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 2009, 457, 706-710.
    54. Y. Wang, X. F. Xu, J. Lu, M. Lin, Q. L. Bao, B. Ozyilmaz and K. P. Lohr, Toward high throughput interconvertible graphane-to-graphene growth and patterning, ACS Nano, 2010, 4, 6146-6152.
    55. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heerr, Electronic confinement and coherence in patterned epitaxial graphene, Science, 2006, 312, 1191-1196.
    56. W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, T. B. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinezr, Epitaxial graphene, Solid State Commun., 2007, 143, 92-100.
    57. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyllerr, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater., 2009, 8, 203-207.
    58. C. N. R. Rao, K. S. Subrahmanyam, H. S. S. R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh and D. J. Later, A study of the synthetic methods and properties of graphenes, Sci. Technol. Adv. Mat., 2010, 11, 054502.
    59. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Colemanr, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 2008, 3, 563-568.
    60. N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang and J. Chenr, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite, Adv. Funct. Mater., 2008, 18, 1518-1525.
    61. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang, I. T. McGovern, G. S. Duesberg and J. N. Colemanr, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 2009, 131, 3611-3620.
    62. B. C. Brodier, On the atomic weight of graphite, Phil. Trans. R. Soc. Lond., 1859, 149, 249-259.
    63. L. Staudenmaierr, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges., 1898, 31, 1481-1487.
    64. W. S. Hummers and R. E. Offemanr, Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, 80, 1339-1339.
    65. O. C. Compton and S. T. Nguyenr, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small, 2010, 6, 711-723.
    66. A. Lerf, H. Y. He, M. Forster and J. Klinowskir, Structure of graphite oxide revisited, J. Phys. Chem. B, 1998, 102, 4477-4482.
    67. J. A. Johnson, C. J. Benmore, S. Stankovich and R. S. Ruoffr, A neutron diffraction study of nano-crystalline graphite oxide, Carbon, 2009, 47, 2239-2243.
    68. C. J. Li and L. Chenr, Organic chemistry in water, Chem. Soc. Rev., 2006, 35, 68-82.
    69. D. Astruc, F. Lu and J. R. Aranzaesr, Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Edit., 2005, 44, 7852-7872.
    70. P. Wasserscheid and W. Keimr, Ionic liquids - new "solutions" for transition metal catalysis, Angew. Chem. Int. Edit., 2000, 39, 3772-3789.
    71. T. Y. Lee and J. H. Suhr, Target-selective peptide-cleaving catalysts as a new paradigm in drug design, Chem. Soc. Rev., 2009, 38, 1949-1957.
    72. P. W. Du and R. Eisenbergr, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energ. Environ. Sci., 2012, 5, 6012-6021.
    73. W. A. Herrmannr, N-heterocyclic carbenes: A new concept in organometallic catalysis, Angew. Chem. Int. Edit., 2002, 41, 1290-1309.
    74. X. Zhao, M. Yin, L. Ma, L. Liang, C. P. Liu, J. H. Liao, T. H. Lu and W. Xingr, Recent advances in catalysts for direct methanol fuel cells, Energ. Environ. Sci., 2011, 4, 2736-2753.
    75. P. R. Schreinerr, Metal-free organocatalysis through explicit hydrogen bonding interactions, Chem. Soc. Rev., 2003, 32, 289-296.
    76. F. Jiao and H. Freir, Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts, Energ. Environ. Sci., 2010, 3, 1018-1027.
    77. Y. J. Li, W. Gao, L. J. Ci, C. M. Wang and P. M. Ajayanr, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon, 2010, 48, 1124-1130.
    78. X. B. Fu, H. Yu, F. Peng, H. J. Wang and Y. Qianr, Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance, Appl. Catal. a-Gen., 2007, 321, 190-197.
    79. Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren and X. G. Qur, Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection, Adv. Mater., 2010, 22, 2206-2210.
    80. T. Xue, S. Jiang, Y. Q. Qu, Q. Su, R. Cheng, S. Dubin, C. Y. Chiu, R. Kaner, Y. Huang and X. F. Duanr, Graphene-supported hemin as a highly active biomimetic oxidation catalyst, Angew. Chem. Int. Edit., 2012, 51, 3822-3825.
    81. F. Porta and L. Pratir, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: An insight into reaction selectivity, J. Catal., 2004, 224, 397-403.
    82. P. D. Tran, L. H. Wong, J. Barber and J. S. C. Loor, Recent advances in hybrid photocatalysts for solar fuel production, Energ. Environ. Sci., 2012, 5, 5902-5918.
    83. K. J. Laidler, J. H. Meiser and B. C. Sanctuaryr, Physical chemistry, Houghton Mifflin ,2003.
    84. C. V. Raman and K. S. Krishnanr, A new type of secondary radiation, Nature, 1928, 121, 501-502.
    85. E. Smith and G. Dentr, Modern Raman spectroscopy: A practical approach, Choice: Current Reviews for Academic Libraries, 2005, 43, 320-320.
    86. B. P. Straughan and S. D. Walkerr, Spectroscopy, Chapman and Hall;Wiley, 1976.
    87. M. Fleischmann, P. J. Hendra and Mcquilla.Ajr, Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 1974, 26, 163-166.
    88. D. L. Jeanmaire and R. P. Vanduyner, Surface Raman spectroelectrochemistry .1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode, J. Electroanal. Chem., 1977, 84, 1-20.
    89. M. Moskovitsr, Surface-enhanced spectroscopy, Rev. Mod. Phys., 1985, 57, 783-826.
    90. P. G. Etchegoin and E. C. Le Rur, A perspective on single molecule SERS: Current status and future challenges, Phys. Chem. Chem. Phys., 2008, 10, 6079-6089.
    91. M. Moskovitsr, Surface-enhanced Raman spectroscopy: A brief retrospective, J. Raman. Spectrosc., 2005, 36, 485-496.
    92. G. C. Schatzr, Theoretical-studies of surface enhanced Raman-scattering, Accounts Chem. Res., 1984, 17, 370-376.
    93. A. Otto, I. Mrozek, H. Grabhorn and W. Akemannr, Surface-enhanced Raman-scattering, J. Phys-Condens. Mat., 1992, 4, 1143-1212.
    94. J. P. Camden, J. A. Dieringer, Y. M. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz and R. P. Van Duyner, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, J. Am. Chem. Soc., 2008, 130, 12616-12617.
    95. A. Campion, J. E. Ivanecky, C. M. Child and M. Fosterr, On the mechanism of chemical enhancement in surface-enhanced Raman-scattering, J. Am. Chem. Soc., 1995, 117, 11807-11808.
    96. A. Campion and P. Kambhampatir, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27, 241-250.
    97. L. Jensen, C. M. Aikens and G. C. Schatzr, Electronic structure methods for studying surface-enhanced Raman scattering, Chem. Soc. Rev., 2008, 37, 1061-1073.
    98. L. L. Zhao, L. Jensen and G. C. Schatzr, Surface-enhanced Raman scattering of pyrazine at the junction between two Ag-20 nanoclusters, Nano Lett., 2006, 6, 1229-1234.
    99. M. J. Mulvihill, X. Y. Ling, J. Henzie and P. D. Yangr, Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS, J. Am. Chem. Soc., 2010, 132, 268-274.
    100. E. Sr, W. E. Haskins and S. M. Nier, Direct observation of size-dependent optical enhancement in single metal nanoparticles, J. Am. Chem. Soc., 1998, 120, 8009-8010.
    101. L. H. Lu, G. Y. Sun, H. J. Zhang, H. S. Wang, S. Q. Xi, J. Q. Hu, Z. Q. Tian and R. Chenr, Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate, J. Mater. Chem., 2004, 14, 1005-1009.
    102. T. Wang, X. G. Hu and S. J. Dongr, Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy, J. Phys. Chem. B, 2006, 110, 16930-16936.
    103. W. Ren, Y. X. Fang and E. K. Wangr, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids, ACS Nano, 2011, 5, 6425-6433.
    104. W. G. Xu, J. Q. Xiao, Y. F. Chen, Y. B. Chen, X. Ling and J. Zhangr, Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy, Adv. Mater., 2013, 25, 928-933.
    105. S. Murphy, L. B. Huang and P. V. Kamatr, Reduced graphene oxide-silver nanoparticle composite as an active SERS material, J. Phys. Chem. C, 2013, 117, 4740-4747.
    106. X. X. Yu, H. B. Cai, W. H. Zhang, X. J. Li, N. Pan, Y. Luo, X. P. Wang and J. G. Hour, Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets, ACS Nano, 2011, 5, 952-958.
    107. W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu and J. Zhangr, Surface enhanced Raman spectroscopy on a flat graphene surface, P. Natl. Acad. Sci. USA, 2012, 109, 9281-9286.
    108. T. Low and P. Avourisr, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, 2014, 8, 1086-1101.
    109. M. D. Hargreaves, K. Page, T. Munshi, R. Tomsett, G. Lynch and H. G. M. Edwardsr, Analysis of seized drugs using portable Raman spectroscopy in an airport environment-a proof of principle study, J. Raman. Spectrosc., 2008, 39, 873-880.
    110. J. Jehlička and P. Vandenabeeler, Evaluation of portable Raman instruments with 532 and 785-nm excitation for identification of zeolites and beryllium containing silicates, J. Raman. Spectrosc., 2015, 46, 03770486.
    111. A. M. Mohs, M. C. Mancini, S. Singhal, J. M. Provenzale, B. Leyland-Jones, M. D. Wang and S. M. Nier, Hand-held spectroscopic device for in vivo and intraoperative tumor detection: Contrast enhancement, detection sensitivity, and tissue penetration, Anal. Chem., 2010, 82, 9058-9065.
    112. A. Samanta, K. K. Maiti, K. S. Soh, X. J. Liao, M. Vendrell, U. S. Dinish, S. W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. H. Chung, M. Olivo and Y. T. Changr, Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection, Angew. Chem. Int. Edit., 2011, 50, 6089-6092.
    113. A. J. Haes, L. Chang, W. L. Klein and R. P. Van Duyner, Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, J. Am. Chem. Soc., 2005, 127, 2264-2271.
    114. W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones and L. D. Zieglerr, Characterization of the surface enhanced Raman scattering (SERS) of bacteria, J. Phys. Chem. B, 2005, 109, 312-320.
    115. S. Shanmukh, L. Jones, J. Driskell, Y. P. Zhao, R. Dluhy and R. A. Trippr, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett., 2006, 6, 2630-2636.
    116. M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang and R. Narayananar, SERS as a bioassay platform: Fundamentals, design, and applications, Chem. Soc. Rev., 2008, 37, 1001-1011.
    117. X. H. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. H. Linr, Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing, Biosens. Bioelectron., 2009, 25, 901-905.
    118. I. Miwa, K. Maeda, J. Okuda and G. Okudar, Mutarotase effect on colorimetric determination of blood-glucose with beta-D-glucose oxidase, Clin. Chim. Acta., 1972, 37, 538-540.
    119. P. A. Svendsen, J. S. Christiansen, U. Soegaard, B. S. Welinder and J. Nerupr, Rapid changes in chromatographically determined haemoglobin a1c induced by short-term changes in glucose concentration, Diabetologia, 1980, 19, 130-136.
    120. U. S. Dinish, F. C. Yaw, A. Agarwal and M. Olivor, Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing, Biosens. Bioelectron., 2011, 26, 1987-1992.
    121. D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh and R. P. Van Duyner, In vivo glucose measurement by surface-enhanced Raman spectroscopy, Anal. Chem., 2006, 78, 7211-7215.
    122. K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg and R. P. Van Duyner, In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: Multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days, Anal. Chem., 2011, 83, 9146-9152.
    123. J. Y. Xu, J. Wang, L. T. Kong, G. C. Zheng, Z. Guo and J. H. Liur, SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms, J. Raman. Spectrosc., 2011, 42, 1728-1735.
    124. S. Botti, L. Cantarini and A. Paluccir, Surface-enhanced Raman spectroscopy for trace-level detection of explosives, J. Raman. Spectrosc., 2010, 41, 866-869.
    125. D. A. Stuart, K. B. Biggs and R. P. Van Duyner, Surface-enhanced Raman spectroscopy of half-mustard agent, Analyst, 2006, 131, 568-572.
    126. J. W. Chen, J. H. Jiang, X. Gao, G. K. Liu, G. L. Shen and R. Q. Yur, A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy, Chem-Eur. J., 2008, 14, 8374-8382.
    127. E. Horvath, J. Mink and J. Kristofr, Surface-enhanced Raman spectroscopy as a technique for drug analysis, Mikrochim Acta, 1997, 14, 745-746.
    128. C. L. Brosseau, F. Casadio and R. P. Van Duyner, Revealing the invisible: Using surface-enhanced Raman spectroscopy to identify minute remnants of color in winslow homer's colorless skies, J. Raman. Spectrosc., 2011, 42, 1305-1310.
    129. E. Bailo and V. Deckertr, Tip-enhanced Raman scattering, Chem. Soc. Rev., 2008, 37, 921-930.
    130. N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam and R. P. Van Duyner, Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy, Nano Lett., 2012, 12, 6506-6506.
    131. R. M. Stockle, Y. D. Suh, V. Deckert and R. Zenobir, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett., 2000, 318, 131-136.
    132. W. H. Zhang, B. S. Yeo, T. Schmid and R. Zenobir, Single molecule tip-enhanced Raman spectroscopy with silver tips, J. Phys. Chem. C, 2007, 111, 1733-1738.
    133. J. Steidtner and B. Pettingerr, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution, Phys. Rev. Lett., 2008, 100, 236101.
    134. S. M. Nie and S. R. Emeryr, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 1997, 275, 1102-1106.
    135. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari and M. S. Feldr, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., 1997, 78, 1667-1670.
    136. M. Moskovits, L. L. Tay, J. Yang and T. Haslettr, SERS and the single molecule, Top Appl. Phys., 2002, 82, 215-226.
    137. A. Fujishima and K. Hondar, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.
    138. J. M. Herrmannr, Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 1999, 53, 115-129.
    139. D. Chatterjee and S. Dasguptar, Visible light induced photocatalytic degradation of organic pollutants, J. Photoch. Photobio. C, 2005, 6, 186-205.
    140. J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang and L. Z. Zhangr, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 2002, 14, 3808-3816.
    141. Y. H. Tang, S. L. Luo, Y. R. Teng, C. B. Liu, X. L. Xu, X. L. Zhang and L. Chenr, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater., 2012, 241, 323-330.
    142. Y. H. Tang, X. Hu and C. B. Liur, Perfect inhibition of cds photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity, Phys. Chem. Chem. Phys., 2014, 16, 25321-25329.
    143. S. U. M. Khan, M. Al-Shahry and W. B. Inglerr, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 2002, 297, 2243-2245.
    144. X. B. Chen, L. Liu, P. Y. Yu and S. S. Maor, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 2011, 331, 746-750.
    145. K. F. Zhou, Y. H. Zhu, X. L. Yang, X. Jiang and C. Z. Lir, Preparation of graphene-TiO2 composites with enhanced photocatalytic activity, New J. Chem., 2011, 35, 353-359.
    146. N. Sobana and M. Swaminathanr, Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of direct blue 53, Sol. Energ. Mat. Sol. C, 2007, 91, 727-734.
    147. Y. H. Zhang, N. Zhang, Z. R. Tang and Y. J. Xur, Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer, ACS Nano, 2012, 6, 9777-9789.
    148. H. Kong, J. Song and J. Jangr, Photocatalytic antibacterial capabilities of TiO2-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization, Environ. Sci. Technol., 2010, 44, 5672-5676.
    149. K. Woan, G. Pyrgiotakis and W. Sigmundr, Photocatalytic carbon-nanotube- TiO2 composites, Adv. Mater., 2009, 21, 2233-2239.
    150. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen and R. S. Ruoffr, Graphene-silica composite thin films as transparent conductors, Nano Lett., 2007, 7, 1888-1892.
    151. X. Y. Zhang, H. P. Li, X. L. Cui and Y. H. Linr, Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 2010, 20, 2801-2806.
    152. R. K. Upadhyay, N. Soin and S. S. Royr, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review, RSC Adv., 2014, 4, 3823-3851.
    153. X. Huang, X. Y. Qi, F. Boey and H. Zhangr, Graphene-based composites, Chem. Soc. Rev., 2012, 41, 666-686.
    154. S. Bai and X. P. Shenr, Graphene-inorganic nanocomposites, RSC Adv., 2012, 2, 64-98.
    155. N. Zhang, Y. H. Zhang and Y. J. Xur, Recent progress on graphene-based photocatalysts: Current status and future perspectives, Nanoscale, 2012, 4, 5792-5813.
    156. M. Pumerar, Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets, Langmuir, 2007, 23, 6453-6458.
    157. D. R. Kauffman and A. Starr, Graphene versus carbon nanotubes for chemical sensor and fuel cell applications, Analyst, 2010, 135, 2790-2797.
    158. K. Krishnamoorthy, R. Mohan and S. J. Kimr, Graphene oxide as a photocatalytic material, Appl. Phys. Lett., 2011, 98, 244101.
    159. B. F. Machado and P. Serpr, Graphene-based materials for catalysis, Catal. Sci. Technol., 2012, 2, 54-75.
    160. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Mulhauptr, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc., 2009, 131, 8262-8270.
    161. Y. Li, X. B. Fan, J. J. Qi, J. Y. Ji, S. L. Wang, G. L. Zhang and F. B. Zhangr, Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction, Nano Res., 2010, 3, 429-437.
    162. Y. Li, X. B. Fan, J. J. Qi, J. Y. Ji, S. L. Wang, G. L. Zhang and F. B. Zhangr, Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction, Mater. Res. Bull., 2010, 45, 1413-1418.
    163. S. Liu, J. Q. Wang, J. Zeng, J. F. Ou, Z. P. Li, X. H. Liu and S. R. Yangr, "Green" electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property, J. Power Sources, 2010, 195, 4628-4633.
    164. Z. M. Luo, L. H. Yuwen, B. Q. Bao, J. Tian, X. R. Zhu, L. X. Weng and L. H. Wangr, One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/rGO) hybrids for fuel cells, J. Mater. Chem., 2012, 22, 7791-7796.
    165. J. D. Qiu, G. C. Wang, R. P. Liang, X. H. Xia and H. W. Yur, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells, J. Phys. Chem. C, 2011, 115, 15639-15645.
    166. Y. M. Li, L. H. Tang and J. H. Lir, Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites, Electrochem. Commun., 2009, 11, 846-849.
    167. X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin and X. Y. Guor, Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction, Chem. Commun., 2012, 48, 1892-1894.
    168. S. X. Wu, Q. Y. He, C. M. Zhou, X. Y. Qi, X. Huang, Z. Y. Yin, Y. H. Yang and H. Zhangr, Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst, Nanoscale, 2012, 4, 2478-2483.
    169. T. Y. Zhang, X. Q. Li, S. Z. Kang, L. X. Qin, G. D. Li and J. Mur, Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core-shell structure and its excellent catalytic properties, J. Mater. Chem. A, 2014, 2, 2952-2959.
    170. J. J. Lv, A. J. Wang, X. H. Ma, R. Y. Xiang, J. R. Chen and J. J. Fengr, One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol, J. Mater. Chem. A, 2015, 3, 290-296.
    171. J. C. Qu, C. L. Ren, Y. L. Dong, Y. P. Chang, M. Zhou and X. G. Chenr, Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts, Chem. Eng. J., 2012, 211, 412-420.
    172. S. T. Sun and P. Y. Wur, Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets, Phys. Chem. Chem. Phys., 2011, 13, 21116-21120.
    173. W. L. Fu, S. J. Zhen and C. Z. Huangr, One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection, Analyst, 2013, 138, 3075-3081.
    174. Y. W. Zhang, S. Liu, W. B. Lu, L. Wang, J. Q. Tian and X. P. Sunr, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catal. Sci. Technol., 2011, 1, 1142-1144.
    175. K. L. Zhangr, Fabrication of copper nanoparticles/graphene oxide composites for surface-enhanced Raman scattering, Appl. Surf. Sci., 2012, 258, 7327-7329.
    176. V. K. Gupta, N. Atar, M. L. Yola, M. Eryilmaz, H. Torul, U. Tamer, I. H. Boyaci and Z. Ustundagr, A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application, J. Colloid. Interf. Sci., 2013, 406, 231-237.
    177. F. Lu, S. H. Zhang, H. J. Gao, H. Jia and L. Q. Zhengr, Protein-decorated reduced oxide graphene composite and its application to SERS, ACS Appl. Mater. Inter., 2012, 4, 3278-3284.
    178. X. J. Liu, L. Y. Cao, W. Song, K. L. Ai and L. H. Lur, Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy, ACS Appl. Mater. Inter., 2011, 3, 2944-2952.
    179. Y. Zhao, W. C. Zeng, Z. C. Tao, P. H. Xiong, Y. Qu and Y. W. Zhur, Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids, Chem. Commun., 2015, 51, 866-869.
    180. Y. K. Kim, S. W. Han and D. H. Minr, Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering, ACS Appl. Mater. Inter., 2012, 4, 6545-6551.
    181. Y. Hu, L. H. Lu, J. H. Liu and W. Chenr, Direct growth of size-controlled gold nanoparticles on reduced graphene oxide film from bulk gold by tuning electric field: Effective methodology and substrate for surface enhanced Raman scattering study, J. Mater. Chem., 2012, 22, 11994-12000.
    182. W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. X. Liu and X. Y. Lingr, Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing, Nanoscale, 2014, 6, 4843-4851.
    183. C. Y. Wen, F. Liao, S. S. Liu, Y. Zhao, Z. H. Kang, X. L. Zhang and M. W. Shaor, Bi-functional ZnO-rGO-Au substrate: Photocatalysts for degrading pollutants and SERS substrates for real-time monitoring, Chem. Commun., 2013, 49, 3049-3051.
    184. X. F. Ding, L. T. Kong, J. Wang, F. Fang, D. D. Li and J. H. Liur, Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions, ACS Appl. Mater. Inter., 2013, 5, 7072-7078.
    185. Y. T. Li, L. L. Qu, D. W. Li, Q. X. Song, F. Fathi and Y. T. Longr, Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 2013, 43, 94-100.
    186. Y. P. Zhang and C. X. Panr, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light, J. Mater. Sci., 2011, 46, 2622-2626.
    187. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Lir, P25-graphene composite as a high performance photocatalyst, ACS Nano, 2010, 4, 380-386.
    188. S. Bai, X. P. Shen, H. W. Lv, G. X. Zhu, C. L. L. Bao and Y. X. Shanr, Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance, J. Colloid. Interf. Sci., 2013, 405, 1-9.
    189. S. M. Sun, W. Z. Wang and L. Zhangr, Bi2WO6 quantum dots decorated reduced graphene oxide: Improved charge separation and enhanced photoconversion efficiency, J. Phys. Chem. C, 2013, 117, 9113-9120.
    190. P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong and S. C. J. Loor, A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: Employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O, Nanoscale, 2012, 4, 3875-3878.
    191. X. F. Yang, H. Y. Cui, Y. Li, J. L. Qin, R. X. Zhang and H. Tangr, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal., 2013, 3, 363-369.
    192. G. K. Pradhan, D. K. Padhi and K. M. Paridar, Fabrication of alpha-Fe2O3 nanorod/rGO composite: A novel hybrid photocatalyst for phenol degradation, ACS Appl. Mater. Inter., 2013, 5, 9101-9110.
    193. G. Q. Luo, X. J. Jiang, M. J. Li, Q. Shen, L. M. Zhang and H. G. Yur, Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst, ACS Appl. Mater. Inter., 2013, 5, 2161-2168.
    194. Y. J. Yao, C. Xu, S. M. Yu, D. W. Zhang and S. B. Wangr, Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics, Ind. Eng. Chem. Res., 2013, 52, 3637-3645.
    195. M. S. A. S. Shah, A. R. Park, K. Zhang, J. H. Park and P. J. Yoor, Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity, ACS Appl. Mater. Inter., 2012, 4, 3893-3901.
    196. X. Zhou, T. J. Shi and H. O. Zhour, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci., 2012, 258, 6204-6211.
    197. X. J. Liu, L. K. Pan, T. Lv and Z. Sunr, Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction, J. Colloid Interf. Sci., 2013, 394, 441-444.
    198. P. Wang, J. Wang, X. F. Wang, H. G. Yu, J. G. Yu, M. Lei and Y. G. Wangr, One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity, Appl. Catal. B-Environ., 2013, 132, 452-459.
    199. Q. P. Luo, X. Y. Yu, B. X. Lei, H. Y. Chen, D. B. Kuang and C. Y. Sur, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity, J. Phys. Chem. C., 2012, 116, 8111-8117.
    200. Y. H. Ng, A. Iwase, A. Kudo and R. Amalr, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett., 2010, 1, 2607-2612.
    201. J. J. Xu, Y. H. Ao and M. D. Chenr, A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation, Mater. Lett., 2013, 92, 126-128.
    202. Y. Lin, Z. G. Geng, H. B. Cai, L. Ma, J. Chen, J. Zeng, N. Pan and X. P. Wangr, Ternary graphene-TiO2-Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability, Eur. J. Inorg. Chem., 2012, 4439-4444.
    203. H. Huang, Z. K. Yue, G. Li, X. M. Wang, J. Huang, Y. K. Du and P. Yangr, Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites: Superior interfacial contacts and enhanced photocatalysis, J. Mater. Chem. A, 2013, 1, 15110-15116.
    204. X. J. Liu, L. K. Pan, Q. F. Zhao, T. Lv, G. Zhu, T. Q. Chen, T. Lu, Z. Sun and C. Q. Sunr, UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI), Chem. Eng. J., 2012, 183, 238-243.
    205. D. S. Koktysh, X. R. Liang, B. G. Yun, I. Pastoriza-Santos, R. L. Matts, M. Giersig, C. Serra-Rodriguez, L. M. Liz-Marzan and N. A. Kotovr, Biomaterials by design: Layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring, Adv. Funct. Mater., 2002, 12, 255-265.
    206. P. Roy, S. Berger and P. Schmukir, TiO2 nanotubes: Synthesis and applications, Angew. Chem. Int. Edit., 2011, 50, 2904-2939.
    207. A. A. Levchenko, G. S. Li, J. Boerio-Goates, B. F. Woodfield and A. Navrotskyr, TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics, Chem. Mater., 2006, 18, 6324-6332.
    208. J. Du, X. Y. Lai, N. L. Yang, J. Zhai, D. Kisailus, F. B. Su, D. Wang and L. Jiangr, Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities, ACS Nano, 2011, 5, 590-596.
    209. L. Zhao, X. F. Chen, X. C. Wang, Y. J. Zhang, W. Wei, Y. H. Sun, M. Antonietti and M. M. Titiricir, One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis, Adv. Mater., 2010, 22, 3317-3321.
    210. W. Y. Choi, A. Termin and M. R. Hoffmannr, The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics, J. Phys. Chem-Us., 1994, 98, 13669-13679.
    211. K. Park, Q. F. Zhang, B. B. Garcia, X. Y. Zhou, Y. H. Jeong and G. Z. Caor, Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells, Adv. Mater., 2010, 22, 2329-2332.
    212. Y. Yang, L. L. Ren, C. Zhang, S. Huang and T. X. Liur, Facile fabrication of functionalized graphene sheets (FGS)/ ZnO nanocomposites with photocatalytic property, ACS Appl. Mater. Inter., 2011, 3, 2779-2785.
    213. O. Akhavanr, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol, Carbon, 2011, 49, 11-18.
    214. P. Schmittinger, T. Florkiewicz, L. C. Curlin, B. Lüke, R. Scannell, T. Navin, E. Zelfel and R. Bartschr, Chlorine, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
    215. H. S. Foglerr, Elements of chemical reaction engineering, Prentice Hall PTR international series in the physical and chemical engineering sciences, 2006.
    216. J. A. Moulijn, P. W. N. M. v. Leeuwen and R. A. v. Santenr, Catalysis : An integrated approach to homogeneous, heterogeneous and industrial catalysis, Studies in surface science and catalysis, 1993.
    217. B. Schrader and D. Bougeardr, Infrared and Raman spectroscopy : Methods and applications, VCH,1995.
    218. J. R. Ferraro, K. Nakamoto and C. W. Brownr, Introductory Raman spectroscopy, Academic Press ,2003.
    219. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feldr, Surface-enhanced Raman scattering and biophysics, J. Phys-Condens. Mat., 2002, 14, R597-R624.
    220. K. Nakamotor, Infrared and Raman spectra of inorganic and coordination compounds, Wiley, 2009.
    221. W. Graf and E. F. Vancer, Shielding effectiveness and electromagnetic protection, Ieee T. Electromagn. C., 1988, 30, 289-293.
    222. K. Kneipp, H. Kneipp, I. I, R. R. Dasari and M. S. Feldr, Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev., 1999, 99, 2957-2976.
    223. P. K. Jain, I. H. El-Sayed and M. A. El-Sayedr, Au nanoparticles target cancer, Nano Today, 2007, 2, 18-29.
    224. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatzr, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107, 668-677.
    225. Z. H. Ni, Y. Y. Wang, T. Yu and Z. X. Shenr, Raman spectroscopy and imaging of graphene, Nano Res., 2008, 1, 273-291.
    226. L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhausr, Raman spectroscopy in graphene, Phys. Rep., 2009, 473, 51-87.
    227. A. C. Ferrarir, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 2007, 143, 47-57.
    228. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geimr, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 2006, 97, 187401.
    229. M. I. Litterr, Heterogeneous photocatalysis-transition metal ions in photocatalytic systems, Appl. Catal. B-Environ., 1999, 23, 89-114.
    230. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemannr, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69-96.
    231. A. L. Linsebigler, G. Q. Lu and J. T. Yatesr, Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735-758.
    232. N. Serponer, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?, J. Phys. Chem. B, 2006, 110, 24287-24293.
    233. J. S. Lee, K. H. You and C. B. Parkr, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Adv. Mater., 2012, 24, 1084-1088.
    234. J. R. Chiou, B. H. Lai, K. C. Hsu and D. H. Chenr, One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction, J. Hazard. Mater., 2013, 248, 394-400.
    235. B. Zhang, P. Xu, X. M. Xie, H. Wei, Z. P. Li, N. H. Mack, X. J. Han, H. X. Xu and H. L. Wangr, Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures, J. Mater. Chem., 2011, 21, 2495-2501.
    236. J. F. Corbettr, An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes, Dyes Pigments, 1999, 41, 127-136.
    237. C. V. Rode, M. J. Vaidya and R. V. Chaudharir, Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene, Org. Process Res. Dev., 1999, 3, 465-470.
    238. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath and T. Palr, Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution, Appl. Catal. a-Gen., 2004, 268, 61-66.
    239. Y. C. Chang and D. H. Chenr, Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst, J. Hazard. Mater., 2009, 165, 664-669.
    240. Y. Lu, Y. Mei, M. Schrinner, M. Ballauff and M. W. Mollerr, In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation, J. Phys. Chem. C, 2007, 111, 7676-7681.
    241. H. Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa and H. Kawasakir, N,N-dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol, Nanoscale, 2012, 4, 4148-4154.
    242. K. Hayakawa, T. Yoshimura and K. Esumir, Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol, Langmuir, 2003, 19, 5517-5521.
    243. B. Naik, S. Hazra, V. S. Prasad and N. N. Ghoshr, Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol, Catal. Commun., 2011, 12, 1104-1108.
    244. A. K. Geimr, Graphene: Status and prospects, Science, 2009, 324, 1530-1534.
    245. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoffr, Graphene-based composite materials, Nature, 2006, 442, 282-286.
    246. G. Eda, G. Fanchini and M. Chhowallar, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, 3, 270-274.
    247. A. Buchsteiner, A. Lerf and J. Pieperr, Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B, 2006, 110, 22328-22338.
    248. C. L. Li and Y. Yamauchir, Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells, Phys. Chem. Chem. Phys., 2013, 15, 3490-3496.
    249. H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K. C. W. Wu and Y. Yamauchir, Mesoporous metallic cells: Design of uniformly sized hollow mesoporous PtRu particles with tunable shell thicknesses, Small, 2013, 9, 1047-1051.
    250. A. Q. Mao, D. H. Zhang, X. Jin, X. L. Gu, X. Q. Wei, G. J. Yang and X. H. Liur, Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity, J. Phys. Chem. Solids, 2012, 73, 982-986.
    251. E. K. Jeon, E. Seo, E. Lee, W. Lee, M. K. Um and B. S. Kimr, Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications, Chem. Commun., 2013, 49, 3392-3394.
    252. M. J. Fernandez-Merino, S. Villar-Rodil, J. I. Paredes, P. Solis-Fernandez, L. Guardia, R. Garcia, A. Martinez-Alonso and J. M. D. Tasconr, Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide, Carbon, 2013, 63, 30-44.
    253. J. Tang, Q. Chen, L. G. Xu, S. Zhang, L. Z. Feng, L. Cheng, H. Xu, Z. Liu and R. Pengr, Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms, ACS Appl. Mater. Inter., 2013, 5, 3867-3874.
    254. Z. J. Qian, Y. C. Cheng, X. F. Zhou, J. H. Wu and G. J. Xur, Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics, J. Colloid Interf. Sci., 2013, 397, 103-107.
    255. J. H. Li, D. Z. Kuang, Y. L. Feng, F. X. Zhang, Z. F. Xu, M. Q. Liu and D. P. Wangr, Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan, Biosens. Bioelectron., 2013, 42, 198-206.
    256. Y. S. Hu, D. Perello, M. Yun, D. H. Kwon and M. Kimr, Variation of switching mechanism in TiO2 thin film resistive random access memory with Ag and graphene electrodes, Microelectron. Eng., 2013, 104, 42-47.
    257. K. C. Hsu and D. H. Chenr, Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity, Nanoscale Res. Lett., 2014, 9, 193-202.
    258. J. Li and C. Y. Liur, Ag/graphene heterostructures: Synthesis, characterization and optical properties, Eur. J. Inorg. Chem., 2010, 1244-1248.
    259. J. Li, C. Y. Liu and Y. Liur, Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol, J. Mater. Chem., 2012, 22, 8426-8430.
    260. L. Guardia, S. Villar-Rodil, J. I. Paredes, R. Rozada, A. Martinez-Alonso and J. M. D. Tasconr, UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation, Carbon, 2012, 50, 1014-1024.
    261. H. T. Beyene, F. D. Tichelaar, P. Peeters, I. Kolev, M. C. M. van de Sanden and M. Creatorer, Hybrid sputtering-remote pecvd deposition of Au nanoparticles on SiO2 layers for surface plasmon resonance-based colored coatings, Plasma Process Polym., 2010, 7, 657-664.
    262. C. Noguezr, Surface plasmons on metal nanoparticles: The influence of shape and physical environment, J. Phys. Chem. C, 2007, 111, 3806-3819.
    263. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold and L. Wirtzr, Raman imaging of doping domains in graphene on SiO2, Appl. Phys. Lett., 2007, 91, 241907.
    264. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geimr, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 2006, 97, 187401.
    265. F. Tuinstra and J. L. Koenigr, Raman spectrum of graphite, J. Chem. Phys., 1970, 53, 1126-1130.
    266. C. Xu, X. Wang and J. W. Zhur, Graphene-metal particle nanocomposites, J. Phys. Chem. C, 2008, 112, 19841-19845.
    267. G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metsonr, Oxidation of a polycrystalline silver foil by reaction with ozone, Appl. Surf. Sci., 2001, 183, 191-204.
    268. C. C. Yeh and D. H. Chen, Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity, Appl. Catal. B-Environ., 2014, 150, 298-304.
    269. R. Leary and A. Westwoodr, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 2011, 49, 741-772.
    270. J. X. Fang, S. Y. Du, S. Lebedkin, Z. Y. Li, R. Kruk, M. Kappes and H. Hahnr, Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy, Nano Lett., 2010, 10, 5006-5013.
    271. N. L. Netzer, Z. Tanaka, B. Chen and C. Y. Jiangr, Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir-Blodgett films via galvanic replacement reaction, J. Phys. Chem. C, 2013, 117, 16187-16194.
    272. Y. Y. Liu, Y. X. Zhang, H. L. Ding, S. C. Xu, M. Li, F. Y. Kong, Y. Y. Luo and G. H. Lir, Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: Their synthesis and pronounced SERS and catalytic properties, J. Mater. Chem. A, 2013, 1, 3362-3371.
    273. J. X. Fang, S. Lebedkin, S. C. Yang and H. Hahnr, A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy, Chem. Commun., 2011, 47, 5157-5159.
    274. W. Ma, M. Z. Sun, L. G. Xu, L. B. Wang, H. Kuang and C. L. Xur, A SERS active gold nanostar dimer for mercury ion detection, Chem. Commun., 2013, 49, 4989-4991.
    275. A. Garcia-Leis, J. V. Garcia-Ramos and S. Sanchez-Cortesr, Silver nanostars with high SERS performance, J. Phys. Chem. C, 2013, 117, 12397-12397.
    276. F. Liao, L. Cheng, J. Li, M. W. Shao, Z. H. Wang and S. T. Leer, An effective oxide shell-protected surface-enhanced Raman scattering (SERS) substrate: The easy route to Ag@AgxO-silicon nanowire films via surface doping, J. Mater. Chem. C, 2013, 1, 1628-1632.
    277. R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang and S. T. Leer, Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly, Adv. Funct. Mater., 2011, 21, 3337-3343.
    278. S. X. Wu, Q. Y. He, C. L. Tan, Y. D. Wang and H. Zhangr, Graphene-based electrochemical sensors, Small, 2013, 9, 1160-1172.
    279. K. Yang, L. Z. Feng, X. Z. Shi and Z. Liur, Nano-graphene in biomedicine: Theranostic applications, Chem. Soc. Rev., 2013, 42, 530-547.
    280. Y. M. He, W. J. Chen, C. T. Gao, J. Y. Zhou, X. D. Li and E. Q. Xier, An overview of carbon materials for flexible electrochemical capacitors, Nanoscale, 2013, 5, 8799-8820.
    281. C. Li and G. Q. Shir, Three-dimensional graphene architectures, Nanoscale, 2012, 4, 5549-5563.
    282. C. F. Hu, Y. L. Liu, J. L. Qin, G. T. Nie, B. F. Lei, Y. Xiao, M. T. Zheng and J. H. Rongr, Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe, ACS Appl. Mater. Inter., 2013, 5, 4760-4768.
    283. M. Iliut, C. Leordean, V. Canpean, C. M. Teodorescu and S. Astileanr, A new green, ascorbic acid-assisted method for versatile synthesis of Au-graphene hybrids as efficient surface-enhanced Raman scattering platforms, J. Mater. Chem. C, 2013, 1, 4094-4104.
    284. N. N. Mallikarjuna and R. S. Varmar, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties, Cryst. Growth Des., 2007, 7, 686-690.
    285. B. Hu, S. B. Wang, K. Wang, M. Zhang and S. H. Yur, Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties, J. Phys. Chem. C, 2008, 112, 11169-11174.
    286. M. I. Dar, S. Sampath and S. A. Shivashankarr, Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study, J. Mater. Chem., 2012, 22, 22418-22423.
    287. M. Poliakoff, J. M. Fitzpatrick, T. R. Farren and P. T. Anastasr, Green chemistry: Science and politics of change, Science, 2002, 297, 807-810.
    288. M. Poliakoff and P. Anastasr, A principled stance, Nature, 2001, 413, 257-257.
    289. Y. C. Lai, W. W. Yin, J. T. Liu, R. M. Xi and J. H. Zhanr, One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles, Nanoscale Res. Lett., 2010, 5, 302-307.
    290. Z. J. Wang, H. Zhu, X. L. Wang, F. Yang and X. R. Yangr, One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles, Nanotechnology, 2009, 20, 465606.
    291. M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tasconr, Vitamin c is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C, 2010, 114, 6426-6432.
    292. K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari and H. Anisr, Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy, J. Phys. Chem. C, 2011, 115, 1403-1409.
    293. S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi and T. Palr, Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion, ACS Appl. Mater. Inter., 2013, 5, 8724-8732.
    294. C. L. Haynes, A. D. McFarland and R. P. Van Duyner, Surface-enhanced Raman spectroscopy, Anal. Chem., 2005, 77, 338a-346a.
    295. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe and R. P. Van Duyner, SERS: Materials, applications, and the future, Materials Today, 2012, 15, 16-25.
    296. C. Y. Chen and C. P. Wongr, Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates, Nanoscale, 2014, 6, 811-816.
    297. W. Y. Li, P. H. C. Camargo, X. M. Lu and Y. N. Xiar, Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering, Nano Lett., 2009, 9, 485-490.
    298. Q. Yang, M. M. Deng, H. Z. Li, M. Z. Li, C. Zhang, W. Z. Shen, Y. N. Li, D. Guo and Y. L. Songr, Highly reproducible SERS arrays directly written by inkjet printing, Nanoscale, 2015, 7, 421-425.
    299. A. Martin, A. Pescaglini, C. Schopf, V. Scardaci, R. Coull, L. Byrne and D. Iacopinor, Surface-enhanced Raman scattering of 4-aminobenzenethiol on Au nanorod ordered arrays, J. Phys. Chem. C, 2014, 118, 13260-13267.
    300. B. Chen, G. W. Meng, Q. Huang, Z. L. Huang, Q. L. Xu, C. H. Zhu, Y. W. Qian and Y. Dingr, Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates, ACS Appl. Mater. Inter., 2014, 6, 15667-15675.
    301. H. Chang, H. Kang, J. K. Yang, A. Jo, H. Y. Lee, Y. S. Lee and D. H. Jeongr, Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous nir SERS activity, ACS Appl. Mater. Inter., 2014, 6, 11859-11863.
    302. X. H. Tang, W. Y. Cai, L. B. Yang and J. H. Liur, Highly uniform and optical visualization of SERS substrate for pesticide analysis based on Au nanoparticles grafted on dendritic alpha-Fe2O3, Nanoscale, 2013, 5, 11193-11199.
    303. D. R. Dreyer, K. A. Jarvis, P. J. Ferreira and C. W. Bielawskir, Graphite oxide as a dehydrative polymerization catalyst: A one-step synthesis of carbon-reinforced poly(phenylene methylene) composites, Macromolecules, 2011, 44, 7659-7667.
    304. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao and Y. S. Chenr, Electromagnetic interference shielding of graphene/epoxy composites, Carbon, 2009, 47, 922-925.
    305. J. H. Shen, Y. H. Zhu, X. L. Yang, J. Zong and C. Z. Lir, Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling, Langmuir, 2013, 29, 690-695.
    306. J. W. Liu, J. L. Wang, W. R. Huang, L. Yu, X. F. Ren, W. C. Wen and S. H. Yur, Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate, Sci. Rep-Uk., 2012, 2, 987.
    307. Q. Q. Ding, H. L. Liu, L. B. Yang and J. H. Liur, Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates, J. Mater. Chem., 2012, 22, 19932-19939.
    308. J. S. Hwang, K. Y. Chen, S. J. Hong, S. W. Chen, W. S. Syu, C. W. Kuo, W. Y. Syu, T. Y. Lin, H. P. Chiang, S. Chattopadhyay, K. H. Chen and L. C. Chenr, The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates, Nanotechnology, 2010, 21, 025502.
    309. A. E. Kandjani, M. Mohammadtaheri, A. Thakkar, S. K. Bhargava and V. Bansalr, Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing, J. Colloid Interf. Sci., 2014, 436, 251-257.
    310. X. H. Li, G. Y. Chen, L. B. Yang, Z. Jin and J. H. Liur, Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection, Adv. Funct. Mater., 2010, 20, 2815-2824.
    311. L. A. Gu, J. Y. Wang, H. Cheng, Y. Z. Zhao, L. F. Liu and X. J. Hanr, One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties, ACS Appl. Mater. Inter., 2013, 5, 3085-3093.
    312. C. J. Cai, M. W. Xu, S. J. Bao, C. C. Ji, Z. J. Lu and D. Z. Jiar, A green and facile route for constructing flower-shaped TiO2 nanocrystals assembled on graphene oxide sheets for enhanced photocatalytic activity, Nanotechnology, 2013, 24, 275602.
    313. G. Williams, B. Seger and P. V. Kamatr, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano, 2008, 2, 1487-1491.
    314. S. T. Kochuveedu, D. P. Kim and D. H. Kimr, Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration, J. Phys. Chem. C, 2012, 116, 2500-2506.
    315. T. Wang, F. Hu, E. Ikhile, F. Liao, Y. Q. Li and M. W. Shaor, Two-step-route to Ag-Au nanoparticles grafted on Ge wafer for extra-uniform SERS substrates, J. Mater. Chem. C, 2015, 3, 559-563.
    316. Z. Aksur, Application of biosorption for the removal of organic pollutants: A review, Process Biochem., 2005, 40, 997-1026.
    317. K. Sakadevan and H. J. Bavorr, Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems, Water Res., 1998, 32, 393-399.
    318. I. Raskin, R. D. Smith and D. E. Saltr, Phytoremediation of metals: Using plants to remove pollutants from the environment, Curr. Opin. Biotech., 1997, 8, 221-226.
    319. B. Van der Bruggen and C. Vandecasteeler, Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry, Environ. Pollut., 2003, 122, 435-445.
    320. M. H. Entezari, A. Heshmati and A. Sarafraz-Yazdir, A combination of ultrasound and inorganic catalyst: Removal of 2-chlorophenol from aqueous solution, Ultrason. Sonochem., 2005, 12, 137-141.
    321. A. J. Du, Y. H. Ng, N. J. Bell, Z. H. Zhu, R. Amal and S. C. Smithr, Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response, J. Phys. Chem. Lett., 2011, 2, 894-899.
    322. X. Du, I. Skachko, A. Barker and E. Y. Andreir, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 2008, 3, 491-495.
    323. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoffr, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, 324, 1312-1314.
    324. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoffr, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 2009, 9, 4359-4363.
    325. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormerr, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 2008, 146, 351-355.
    326. D. Chen, H. B. Feng and J. H. Lir, Graphene oxide: Preparation, functionalization, and electrochemical applications, Chem. Rev., 2012, 112, 6027-6053.
    327. M. Q. Yang, N. Zhang, M. Pagliaro and Y. J. Xur, Artificial photosynthesis over graphene-semiconductor composites. Are we getting better?, Chem. Soc. Rev., 2014, 43, 8240-8254.
    328. G. Williams and P. V. Kamatr, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide, Langmuir, 2009, 25, 13869-13873.
    329. Y. H. Ng, A. Iwase, N. J. Bell, A. Kudo and R. Amalr, Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions, Catal. Today, 2011, 164, 353-357.
    330. B. Tryba, A. W. Morawski and M. Inagakir, Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal. B-Environ., 2003, 41, 427-433.
    331. J. H. Park, S. Kim and A. J. Bardr, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett., 2006, 6, 24-28.
    332. H. Q. Sun, S. Z. Liu, S. M. Liu and S. B. Wangr, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue, Appl. Catal. B-Environ., 2014, 146, 162-168.
    333. Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan and J. R. Gongr, Highly efficient visible-light-driven photocatalytic hydrogen production of cds-cluster-decorated graphene nanosheets, J. Am. Chem. Soc., 2011, 133, 10878-10884.
    334. F. J. Maldonado-Hodarr, Removing aromatic and oxygenated vocs from polluted air stream using Pt-carbon aerogels: Assessment of their performance as adsorbents and combustion catalysts, J. Hazard. Mater., 2011, 194, 216-222.
    335. T. G. Xu, L. W. Zhang, H. Y. Cheng and Y. F. Zhur, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B-Environ., 2011, 101, 382-387.
    336. D. Yang, Y. Y. Sun, Z. W. Tong, Y. Tian, Y. B. Li and Z. Y. Jiangr, Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion, J. Phys. Chem. C, 2015, 119, 5827-5835.
    337. H. J. Zhang, G. D. Du, W. Q. Lu, L. L. Cheng, X. F. Zhu and Z. Jiaor, Porous TiO2 hollow nanospheres: Synthesis, characterization and enhanced photocatalytic properties, Crystengcomm, 2012, 14, 3793-3801.
    338. X. M. Lu, J. Y. Shen, J. X. Wang, Z. S. Cui and J. M. Xier, Highly efficient visible-light photocatalysts: Reduced graphene oxide and C3N4 nanosheets loaded with Ag nanoparticles, RSC Adv., 2015, 5, 15993-15999.
    339. Y. J. Xu, Y. B. Zhuang and X. Z. Fur, New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange, J. Phys. Chem. C, 2010, 114, 2669-2676.
    340. A. L. Pattersonr, The scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56, 978-982.
    341. W. J. Ren, Z. H. Ai, F. L. Jia, L. Z. Zhang, X. X. Fan and Z. G. Zour, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal. B-Environ., 2007, 69, 138-144.
    342. Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K. A. Grayr, Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity, Environ. Sci. Technol., 2008, 42, 4952-4957.
    343. S. Sakthivel and H. Kischr, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Edit., 2003, 42, 4908-4911.
    344. H. B. Fu, S. C. Zhang, T. G. Xu, Y. F. Zhu and J. M. Chenr, Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products, Environ. Sci. Technol., 2008, 42, 2085-2091.
    345. I. V. Lightcap, T. H. Kosel and P. V. Kamatr, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett., 2010, 10, 577-583.
    346. H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri and J. H. Yer, Nano-photocatalytic materials: Possibilities and challenges, Adv. Mater., 2012, 24, 229-251.
    347. X. F. Zhou, C. Hu, X. X. Hu, T. W. Peng and J. H. Qur, Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation, J. Phys. Chem. C, 2010, 114, 2746-2750.

    下載圖示 校內:2020-09-07公開
    校外:2020-09-07公開
    QR CODE