簡易檢索 / 詳目顯示

研究生: 李銘偉
Lee, Ming-Wei
論文名稱: 24-GHz與60-GHz CMOS低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製
Research on 24- and 60-GHz Millimeter-wave CMOS Low-power VCO, Superharmonic Frequency Dividers
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 無線通訊鎖相迴路CMOS24-GHz60-GHz毫米波壓控振盪器電流再利用型低功耗基極順向偏壓注入鎖定除頻器除五除頻器高次諧波除頻器寬頻
外文關鍵詞: wireless, phase-locked loop, 24-GHz, 60-GHz, millimeter-wave, CMOS, VCO, current-reuse, low-power, forward body bias, injection locked frequency divider, divide-by-5 frequency divider, superharmonic freuqency divider
相關次數: 點閱:242下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製24-GHz之低功耗壓控振盪器,以及24-與60-GHz高除數除五除頻器。24-GHz改良型電流再利用之壓控振盪器採用TSMC 0.18-μm CMOS製程,並使用電流再利用式之架構完成,而為了可進一步降低功率消耗並可具有不錯的相位雜訊值,採用了基極順向偏壓的技術,可有效降低功率消耗,並利用MIM電容與可變電容並聯,以提升共振腔之Q值,達到較低的相位雜訊值。24-及60-GHz直接注入式除五除頻器分別採用TSMC 0.18-μm CMOS與TSMC 90-nm CMOS製程,使用高除數除頻器可降低鎖相迴路的複雜度,利用注入之訊號與振盪器之四階諧波項進行混頻,並注入鎖定達成除五的功能。最後設計之90-nm 60-GHz改良式除五除頻器改善原除五除頻器面積過大的問題,使用stub並串聯電容至地的方式,以代替使用四分之一波長的open stub造成面積較大的問題,而其在鎖定範圍上亦具有不錯的表現。

    This thesis presents the design of a 24-GHz CMOS low-power VCO, 24- and 60-GHz divide-by-5 frequency dividers for millimeter-wave communication application. A 24-GHz low-power current-reuse VCO is implemented by TSMC 0.18-μm CMOS process. The 24- and 60-GHz divide-by-5 frequency dividers, which use the modified parallel injection topology, are implemented by TSMC 0.18-μm and 90-nm CMOS process, respectively. Finally, a 90-nm CMOS 60-GHz modified divide-by-5 frequency divider is presented. It adopts the injection locked structure and uses a series capacitor connected with a stub to reduce the chip size. The good performance and FOM values of the designed frequency dividers are obtained.

    第一章 緒論 1 1.1 無證照通訊頻帶之研究背景 1 1.2 24 GHZ短距離汽車雷達系統簡介 2 1.3 無線通訊60-GHZ WPAN系統簡介 3 1.3.1 毫米波簡介 3 1.3.2 實驗室60-GHz WPAN系統規劃 5 1.4 論文架構簡介 6 第二章 24-GHz電流再利用型低功耗壓控振盪器 7 2.1 CMOS壓控振盪器架構應用簡介 7 2.1.1 傳統L-C壓控振盪器 8 2.1.2 低功率壓控振盪器 9 2.2 24-GHZ電流再利用型低功耗壓控振盪器設計流程 13 2.2.1 電路架構考量 13 2.2.2 基極順向偏壓技術 13 2.2.3 LC-tank設計 16 2.2.4 緩衝放大級設計 18 2.2.5 完整電路設計與佈局考量 18 2.3 模擬與量測結果 21 2.3.1 24-GHz電流再利用型低功耗壓控振盪器模擬結果 21 2.3.2 24-GHz電流再利用型低功耗壓控振盪器量測結果 21 2.4 結果與討論 26 第三章 60-及24-GHz之CMOS寬頻除五除頻器 27 3.1 毫米波CMOS注入鎖定除頻器架構應用簡介 27 3.1.1 注入鎖定除二除頻器 29 3.1.2 注入鎖定除三除頻器 39 3.1.2 注入鎖定除四除頻器 47 3.2 60-GHZ CMOS寬頻除五除頻器 49 3.2.1 電路架構考量 49 3.2.2 除五除頻器模型 50 3.2.3 Harmonic termination設計 51 3.2.4 緩衝放大級 53 3.2.5 馬遜平衡器 53 3.2.6 完整電路設計與考量 54 3.2.7 模擬與量測結果 57 3.3 24-GHZ CMOS寬頻除五除頻器 61 3.3.1 9.6-GHz 1/4波長open stub 61 3.3.2 完整電路設計與考量 61 3.3.2 模擬與量測結果 64 3.4 結果與討論 69 3.4.1 60-GHz CMOS寬頻除五除頻器結果與討論 69 3.4.2 24-GHz CMOS寬頻除五除頻器結果與討論 69 第四章 60-GHz之改良寬頻除五除頻器 71 4.1 改良除五除頻器簡介 71 4.2 完整電路設計與考量 74 4.3 模擬與量測結果 76 4.3.1 60-GHz CMOS改良寬頻除五除頻器模擬結果 76 4.3.2 60-GHz CMOS改良寬頻除五除頻器量測結果 77 4.4 60-GHZ改良寬頻除五直接注入式除頻器量測結果討論 82 第五章 結論 83 參考文獻 85 附錄A 相位雜訊分析 89 附錄B 注入鎖定除頻器原理與分析 95 B.1 直接注入鎖定除頻器鎖定頻寬 96 B.2 雙端注入鎖定除頻器分析 101

    [1] C. Koh, “The benefits of 60 GHz unlicensed wireless communications,” 2004.
    [2] Delphi Corporation, “Consultation paper on the introduction of wireless systems using ultra-wideband technology,” Industry Canada, May 2005.
    [3] http://www.dailywireless.org/2006/11/13/more-70ghz-radios/
    [4]http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
    [5] Tommy K., K. Tsang, and Mourad N. El-Gamal, “A high figure of merit and area-efficient low-voltage (0.7-1 V) 12 GHz CMOS VCO,” in IEEE RFIC Symp. Dig., Jun. 2003, pp.89-92.
    [6] X. S. Chen, Y. T. Chen and H. R. Chuang, “A 1-V low-voltage 12-GHz VCO in 0.18-μm CMOS technology,” in IEEE Asia Pacific Microw. Conf., Dec. 2008, pp. 1-4.
    [7] X. Li, S. Shekhar, D. J. Allstot, “Low-power gm-boosted LNA and VCO circuits in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp.534-615.
    [8] K. Kwok and H. Luong, “A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-μm CMOS process,” in IEEE Custom Integr. Circuits Conf., Sep. 2003, pp.551-554.
    [9] K. Kwok and H. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
    [10] C. K. Hsieh, K. Y. Kao, and K. Y. Lin, “An ultra-low-power CMOS complementary VCO using three coil transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp.91-94.
    [11] S. J. Yun, S. B. Shin, H. C. Choi, and S. G. Lee, “A 1 mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 540-616.
    [12] C. L. Yang and Y. C. Chiang, “Low phase-noise and low-power CMOS VCO contructed in current-reused configuration,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 2, pp. 136-138, Feb. 2008.
    [13] S. L. Jang, C. C. Liu, C. Y. Wu, and M. H. Juang, “A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 4, pp. 233-235, Apr. 2009.
    [14] M. D. Wei, S. F. Chang, and S. W. Huang, “An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 6, pp. 395-397, Jun. 2009.
    [15] J. Yang, C. Y. Kim, D. W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173-177, Mar. 2010.
    [16] C. K. Hsieh, K. Y. Kao, J. R. Tseng, and K. Y. Lin, “A K-band CMOS low power modified colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1293-1296.
    [17] Y. H. Kuo, J. H. Tsai, and T. W. Huang, “A 1.7-mW 16.8 % frequency tuning 24-GHz transformer-based LC-VCO using 0.18-μm CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 79-82.
    [18] S. Y. Kim, C. S. Cho, J. W. Lee, and J. Kim, “A novel feedback low phase noise Ka-band push push CMOS VCO,” in IEEE Asia Pacific Microw. Conf., Dec. 2009, pp. 1735-1738.
    [19] C. C. Li, T. P. Wang, C. C. Kuo, M. C. Chuang, and H. Wang, ”A 21 GHz complementary transformer coupled,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 4, pp. 278-280, Apr. 2008.
    [20] D. Ozis, N. M. Neihart, and D. J. Allstot,” Differential VCO and passive frequency doubler in 0.18 μm CMOS for 24GHz applications,” in IEEE RFIC Symp. Dig., Jun. 2006, pp. 4.
    [21] J. O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, “Performance variations of a 66 GHz static CML divider in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2142-2151.
    [22] D. D. Kim, J. Kim, and C. Cho, “A 94 GHz locking hysteresis-assisted and tunable CML static divider in 65 nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 460-628.
    [23] T. N. Luo, S. Y. Bai, and Y. J.E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electron. Lett., vol. 45, no. 1, pp. 57-59, Jan. 2009.
    [24] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
    [25] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2001, pp. 412-413, 471.
    [26] Marc Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [27] K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2004, pp. 135-138.
    [28] J. C. Chien and L. H. Lu, “40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 544-621.
    [29] Y. H. Wong, W. H. Lin, J. H. Tsai, and T. W. Huang, “A 50-to-62 GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in IEEE RFIC Symp. Dig., Apr. 2008, pp.435-438.
    [30] K. H. Tsai, L. C. Cho, J. H. Wu, and S. I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 466-628.
    [31] B. Y. Lin, K. H. Tsai, and S. I. Liu, “A 128.24-to-137.00 GHz injection-locked frequency divider in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 282-283, 283a.
    [32] T. N. Luo, Y. J. E. Chen, and D. Heo, “A V-band wide locking range CMOS frequency divider,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 563-566.
    [33] S. Rong, A. W.L. Ng, and H. C. Luong, “0.9 mW 7 GHz and 1.6 mW 60 GHz frequency dividers with locking-range enhancement in 0.13 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 96-97.
    [34] C. C. Chen, H. W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060-3069, Dec. 2009.
    [35] Y. T Chen, M. W. Li, T. H. Huang, and H. R. Chuang, ”A V-band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Micro. and Wireless Components Letter, vol. 20, no. 7, pp. 396-398, Jul. 2010.
    [36] S. L. Jang, C. W. Tai, and C. F. Lee, “Divide-by-3 injection-locked frequency divider implemented with active inductor,” IEEE Microwave and Optical technology Letters, vol. 50, no. 6, pp. 1682-1685, Jun. 2008.
    [37] H. Wu and L. Zhang, “A 16-to-18 GHz 0.18 μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2482-2491.
    [38] C. H. Wang, C. C. Chen, M. F. Lei, M. C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13 μm CMOS technology,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 344-347.
    [39] T. N. Luo, S. Y. Bai, and Y. J. E. Chen, “A 60-GHz 0.13 μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
    [40] S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “LC-Tank Colpitts Injection-Locked Frequency Divider With Even and Odd Modulo,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 2, Feb. 2009.
    [41] S. L. Jang, R. K. Yang, C. W. Chang, and M. H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 5, May. 2009.
    [42] H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, Y. C. Yang, and S. S. Lu, “A mm-wave CMOS multimode frequency divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp.280 -281, 281a.
    [43] S. L. Jang, and C. W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Micro. and Wireless Components Letter, vol. 20, no. 4, Apr. 2010.
    [44] T. N. Luo, and Y. J. E. Chen, “A 44 GHz 0.18 μm CMOS superharmonic frequency divider,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1409-1412,.
    [45] T. N. Luo, and Y. J. E. Chen, “A millimeter-wave 90-nm CMOS self-mixing frequency divider,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 8, Aug. 2008.
    [46] S. C. Tseng, C. Meng, C. H. Chang, C. K. Wu, and G. W. Huang, “Monolithic broadband gilbert micromixer with an integrated marchand balun using standard silicon IC process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4362-4371, Dec. 2006.
    [47] X. P. Yu, H. M. Cheema, R. Mahmoudi, A. V. Roermund, and X. L. Yan, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 9, Sep. 2009.
    [48] S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “V-Band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, June. 2005.
    [49] S. Rong and H. C. Luong, “A 1 V 1.7 mW 25 GHz transformer-feedback divide-by-3 frequency divider with quadrature outputs,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 328-331.
    [50] M. C. Chuang, J. J. Kuo, C. H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 5, May. 2008.
    [51] 王銓慶,應用於MB-應用於MB-OFDM Mode-1 UWB接收機之,CMOS壓控振盪器與頻率合成器的研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
    [52] 陳臆聰,24-GHz CMOS壓控振盪器與24-及60-GHz除頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。

    下載圖示 校內:2011-08-30公開
    校外:2011-08-30公開
    QR CODE