| 研究生: |
李銘偉 Lee, Ming-Wei |
|---|---|
| 論文名稱: |
24-GHz與60-GHz CMOS低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製 Research on 24- and 60-GHz Millimeter-wave CMOS Low-power VCO, Superharmonic Frequency Dividers |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 無線通訊 、鎖相迴路 、CMOS 、24-GHz 、60-GHz 、毫米波 、壓控振盪器 、電流再利用型 、低功耗 、基極順向偏壓 、注入鎖定除頻器 、除五除頻器 、高次諧波除頻器 、寬頻 |
| 外文關鍵詞: | wireless, phase-locked loop, 24-GHz, 60-GHz, millimeter-wave, CMOS, VCO, current-reuse, low-power, forward body bias, injection locked frequency divider, divide-by-5 frequency divider, superharmonic freuqency divider |
| 相關次數: | 點閱:242 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研製24-GHz之低功耗壓控振盪器,以及24-與60-GHz高除數除五除頻器。24-GHz改良型電流再利用之壓控振盪器採用TSMC 0.18-μm CMOS製程,並使用電流再利用式之架構完成,而為了可進一步降低功率消耗並可具有不錯的相位雜訊值,採用了基極順向偏壓的技術,可有效降低功率消耗,並利用MIM電容與可變電容並聯,以提升共振腔之Q值,達到較低的相位雜訊值。24-及60-GHz直接注入式除五除頻器分別採用TSMC 0.18-μm CMOS與TSMC 90-nm CMOS製程,使用高除數除頻器可降低鎖相迴路的複雜度,利用注入之訊號與振盪器之四階諧波項進行混頻,並注入鎖定達成除五的功能。最後設計之90-nm 60-GHz改良式除五除頻器改善原除五除頻器面積過大的問題,使用stub並串聯電容至地的方式,以代替使用四分之一波長的open stub造成面積較大的問題,而其在鎖定範圍上亦具有不錯的表現。
This thesis presents the design of a 24-GHz CMOS low-power VCO, 24- and 60-GHz divide-by-5 frequency dividers for millimeter-wave communication application. A 24-GHz low-power current-reuse VCO is implemented by TSMC 0.18-μm CMOS process. The 24- and 60-GHz divide-by-5 frequency dividers, which use the modified parallel injection topology, are implemented by TSMC 0.18-μm and 90-nm CMOS process, respectively. Finally, a 90-nm CMOS 60-GHz modified divide-by-5 frequency divider is presented. It adopts the injection locked structure and uses a series capacitor connected with a stub to reduce the chip size. The good performance and FOM values of the designed frequency dividers are obtained.
[1] C. Koh, “The benefits of 60 GHz unlicensed wireless communications,” 2004.
[2] Delphi Corporation, “Consultation paper on the introduction of wireless systems using ultra-wideband technology,” Industry Canada, May 2005.
[3] http://www.dailywireless.org/2006/11/13/more-70ghz-radios/
[4]http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
[5] Tommy K., K. Tsang, and Mourad N. El-Gamal, “A high figure of merit and area-efficient low-voltage (0.7-1 V) 12 GHz CMOS VCO,” in IEEE RFIC Symp. Dig., Jun. 2003, pp.89-92.
[6] X. S. Chen, Y. T. Chen and H. R. Chuang, “A 1-V low-voltage 12-GHz VCO in 0.18-μm CMOS technology,” in IEEE Asia Pacific Microw. Conf., Dec. 2008, pp. 1-4.
[7] X. Li, S. Shekhar, D. J. Allstot, “Low-power gm-boosted LNA and VCO circuits in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp.534-615.
[8] K. Kwok and H. Luong, “A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-μm CMOS process,” in IEEE Custom Integr. Circuits Conf., Sep. 2003, pp.551-554.
[9] K. Kwok and H. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[10] C. K. Hsieh, K. Y. Kao, and K. Y. Lin, “An ultra-low-power CMOS complementary VCO using three coil transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp.91-94.
[11] S. J. Yun, S. B. Shin, H. C. Choi, and S. G. Lee, “A 1 mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 540-616.
[12] C. L. Yang and Y. C. Chiang, “Low phase-noise and low-power CMOS VCO contructed in current-reused configuration,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 2, pp. 136-138, Feb. 2008.
[13] S. L. Jang, C. C. Liu, C. Y. Wu, and M. H. Juang, “A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 4, pp. 233-235, Apr. 2009.
[14] M. D. Wei, S. F. Chang, and S. W. Huang, “An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 6, pp. 395-397, Jun. 2009.
[15] J. Yang, C. Y. Kim, D. W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173-177, Mar. 2010.
[16] C. K. Hsieh, K. Y. Kao, J. R. Tseng, and K. Y. Lin, “A K-band CMOS low power modified colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1293-1296.
[17] Y. H. Kuo, J. H. Tsai, and T. W. Huang, “A 1.7-mW 16.8 % frequency tuning 24-GHz transformer-based LC-VCO using 0.18-μm CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 79-82.
[18] S. Y. Kim, C. S. Cho, J. W. Lee, and J. Kim, “A novel feedback low phase noise Ka-band push push CMOS VCO,” in IEEE Asia Pacific Microw. Conf., Dec. 2009, pp. 1735-1738.
[19] C. C. Li, T. P. Wang, C. C. Kuo, M. C. Chuang, and H. Wang, ”A 21 GHz complementary transformer coupled,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 4, pp. 278-280, Apr. 2008.
[20] D. Ozis, N. M. Neihart, and D. J. Allstot,” Differential VCO and passive frequency doubler in 0.18 μm CMOS for 24GHz applications,” in IEEE RFIC Symp. Dig., Jun. 2006, pp. 4.
[21] J. O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, “Performance variations of a 66 GHz static CML divider in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2142-2151.
[22] D. D. Kim, J. Kim, and C. Cho, “A 94 GHz locking hysteresis-assisted and tunable CML static divider in 65 nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 460-628.
[23] T. N. Luo, S. Y. Bai, and Y. J.E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electron. Lett., vol. 45, no. 1, pp. 57-59, Jan. 2009.
[24] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[25] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2001, pp. 412-413, 471.
[26] Marc Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[27] K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2004, pp. 135-138.
[28] J. C. Chien and L. H. Lu, “40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 544-621.
[29] Y. H. Wong, W. H. Lin, J. H. Tsai, and T. W. Huang, “A 50-to-62 GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in IEEE RFIC Symp. Dig., Apr. 2008, pp.435-438.
[30] K. H. Tsai, L. C. Cho, J. H. Wu, and S. I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 466-628.
[31] B. Y. Lin, K. H. Tsai, and S. I. Liu, “A 128.24-to-137.00 GHz injection-locked frequency divider in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 282-283, 283a.
[32] T. N. Luo, Y. J. E. Chen, and D. Heo, “A V-band wide locking range CMOS frequency divider,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 563-566.
[33] S. Rong, A. W.L. Ng, and H. C. Luong, “0.9 mW 7 GHz and 1.6 mW 60 GHz frequency dividers with locking-range enhancement in 0.13 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 96-97.
[34] C. C. Chen, H. W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060-3069, Dec. 2009.
[35] Y. T Chen, M. W. Li, T. H. Huang, and H. R. Chuang, ”A V-band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Micro. and Wireless Components Letter, vol. 20, no. 7, pp. 396-398, Jul. 2010.
[36] S. L. Jang, C. W. Tai, and C. F. Lee, “Divide-by-3 injection-locked frequency divider implemented with active inductor,” IEEE Microwave and Optical technology Letters, vol. 50, no. 6, pp. 1682-1685, Jun. 2008.
[37] H. Wu and L. Zhang, “A 16-to-18 GHz 0.18 μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2482-2491.
[38] C. H. Wang, C. C. Chen, M. F. Lei, M. C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13 μm CMOS technology,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 344-347.
[39] T. N. Luo, S. Y. Bai, and Y. J. E. Chen, “A 60-GHz 0.13 μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[40] S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “LC-Tank Colpitts Injection-Locked Frequency Divider With Even and Odd Modulo,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 2, Feb. 2009.
[41] S. L. Jang, R. K. Yang, C. W. Chang, and M. H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 5, May. 2009.
[42] H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, Y. C. Yang, and S. S. Lu, “A mm-wave CMOS multimode frequency divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp.280 -281, 281a.
[43] S. L. Jang, and C. W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Micro. and Wireless Components Letter, vol. 20, no. 4, Apr. 2010.
[44] T. N. Luo, and Y. J. E. Chen, “A 44 GHz 0.18 μm CMOS superharmonic frequency divider,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1409-1412,.
[45] T. N. Luo, and Y. J. E. Chen, “A millimeter-wave 90-nm CMOS self-mixing frequency divider,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 8, Aug. 2008.
[46] S. C. Tseng, C. Meng, C. H. Chang, C. K. Wu, and G. W. Huang, “Monolithic broadband gilbert micromixer with an integrated marchand balun using standard silicon IC process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4362-4371, Dec. 2006.
[47] X. P. Yu, H. M. Cheema, R. Mahmoudi, A. V. Roermund, and X. L. Yan, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Micro. and Wireless Components Letter, vol. 19, no. 9, Sep. 2009.
[48] S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “V-Band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, June. 2005.
[49] S. Rong and H. C. Luong, “A 1 V 1.7 mW 25 GHz transformer-feedback divide-by-3 frequency divider with quadrature outputs,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 328-331.
[50] M. C. Chuang, J. J. Kuo, C. H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Micro. and Wireless Components Letter, vol. 18, no. 5, May. 2008.
[51] 王銓慶,應用於MB-應用於MB-OFDM Mode-1 UWB接收機之,CMOS壓控振盪器與頻率合成器的研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[52] 陳臆聰,24-GHz CMOS壓控振盪器與24-及60-GHz除頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。