簡易檢索 / 詳目顯示

研究生: 陳郁雯
Chen, Yu-Wen
論文名稱: Sn-Zn無鉛銲錫光伏銅帶之界面微觀組織特徵及剝離力研究
A Study on Interfacial Microstructure and Peel Force of Sn-Zn Lead-free Photovoltaic Copper Ribbon
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: Sn-Zn無鉛銲錫介金屬化合物光伏銅帶
外文關鍵詞: Sn-Zn lead-free solder, intermetallic compound, photovoltaic copper ribbon
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Sn-Zn合金具有電導率佳之優點,應用於光伏導帶上可改善光伏模組之電子傳遞效率。因此本實驗選用Sn-9Zn、Sn-25Zn及Sn-50Zn三種成分之無鉛銲錫合金,作為應用在太陽能模組上光伏銅帶之鍍錫層,並以剝離力測試及界面組織觀察評估Sn-Zn合金對光伏模組之適用性,接著以高電流通電測試模擬之後應用上界面變化對Sn-Zn光伏模組體電阻之影響。
    從光伏銅帶之界面組織觀察顯示,銅帶經過浸鍍後會在solder/Cu界面處形成Cu5Zn8層,且厚度隨著Zn含量增加而上升。與銀膠回銲之後,Ag會和Zn形成介金屬化合物AgZn3及AgZn,且AgZn會隨著回銲時間增加而消失並轉而生成AgZn3,AgZn3主要分布在solder/Cu5Zn8及solder/Ag界面處。隨著AgZn3持續生成,基板上之銀膠同時被消耗導致厚度降低。剝離測試結果則顯示,Sn-9Zn多由solder/Cu界面處破壞,而Sn-25Zn及Sn-50Zn則由銲錫基地中及銀膠和基板界面處破壞,且光伏模組之剝離力隨著Zn含量及回銲時間增加而降低。由界面組織及剝離結果推論,介金屬化合物之生成可增加界面接合強度,而添加過多之Zn會消耗銀膠導致模組接合強度降低。
    經由通電測試可觀察到,使用Sn-Zn合金作為銲錫之光伏模組,其體電阻較錫銀銅合金低,且以Sn-25Zn合金具有最低之體電阻。而經過長時間高電流密度通電後,三種成分之Sn-Zn光伏模組之體電阻皆上升,上升幅度隨著鋅含量增加而變大。通電後之模組界面組織演變則為銲錫基地相中之殘留富鋅相持續與Cu及Ag反應生成IMC並消耗銀膠,殘留富鋅相也因此而減少。

    Due to its excellent conductivity, Sn-Zn lead-free solder can be applied to photovoltaic ribbon (PV ribbon) for improving the efficiency of electron transport. The Sn-xZn lead-free alloys (x= 9, 25, and 50 wt%) were used for photovoltaic copper ribbon in this study. The applicability of Sn-xZn alloys were evaluated by peel test and interfacial microstructure. And then, electrification test with high current density was applied to photovoltaic module (PV module), and the interfacial microstructures before and after electrification test were observed to estimate how the interface transition affected the volume resistence of PV module.
    The interfacial microstructure of the PV ribbon reveals that Cu5Zn8 layer forms between Sn-Zn solder and Cu after dipping, and the thickness of Cu5Zn8 layer increases with increasing the Zn content. After reflowing with Ag paste, Ag reacts with Zn to form intermetallic compound (IMC) including AgZn3 and AgZn. AgZn will transform into AgZn3 as reflowing time increases, AgZn3 mainly forms at both Sn-Zn solder/Cu5Zn8 interface and Sn-Zn solder/Ag interface. The thickness of Ag paste decreases when AgZn3 keeps forming because Ag paste is consumed to form AgZn3. The result of peel test shows the fracture of Sn-9Zn PV module is situated at Sn-9Zn solder/Cu interface, but that of Sn-25Zn and Sn-50Zn modules occurs not only between Ag paste and substrate but in Sn-Zn solder base. The peel force of PV module decreases as Zn content and reflowing time increase. According to interfacial microstructure and peel test, the generaton of IMC can improve the bonding strength between solder and substrate, while the excessive zinc can consume Ag paste and decrease the bonding strength.
    After electrification test, the volume resistence of Sn-Zn PV module is less than that of Sn-Ag-Cu PV module, and that of Sn-25Zn is the lowest one. All the volume resistence of Sn-Zn PV modules increase after prolonged electrification and the rise range of their volume resistence increases with increasing the Zn content. The residual Zn-rich phase in solder base reacts with Cu and Ag to form IMC and consumes Ag paste, causing Ag paste to become thinner, and the residual Zn-rich phase becomes less.

    摘要............................................ I Abstract....................................... II 誌謝............................................ IV 目錄............................................ IV 表目錄.......................................... VIII 圖目錄.......................................... IX 第一章 前言...................................... 1 第二章 文獻回顧.................................. 2 2-1 光伏導帶在太陽能電池模組上的應用................ 2 2-1-1 光伏導帶對太陽能電池模組串聯電阻之影響......... 2 2-1-2 光伏導帶的機械性質對矽基板破片率的影響......... 3 2-2 銲錫應用與無鉛化發展.......................... 3 2-3 常用的無鉛銲錫合金............................ 4 2-3-1 Sn-Ag及Sn-Ag-Cu合金....................... 4 2-3-2 Sn-Zn合金................................ 5 2-4 接合材界面反應之相關文獻....................... 6 2-4-1 銲錫與基材之接合材界面反應動力學.............. 6 2-4-2 Sn-Zn合金與金屬基材接合之界面反應............ 6 2-5 通電對接合材之影響............................ 7 2-6 接合模組之破壞特性............................ 8 2-7 介金屬化合物對太陽能模組之影響.................. 8 第三章 實驗方法.................................. 18 3-1 退火銅帶製作................................. 18 3-2 Sn-Zn合金的電性量測.......................... 19 3-2-1 Sn-Zn合金直流通電熔斷電流量測................ 19 3-2-2 Sn-Zn合金電導率量測........................ 20 3-3 光伏銅帶模組製備及界面金相觀察.................. 20 3-3-1 光伏銅帶製作............................... 20 3-3-2 光伏銅帶模組製作........................... 20 3-3-3 光伏銅帶模組之界面微觀組織分析................ 21 3-4 光伏銅帶模組剝離力測試........................ 21 3-5 光伏銅帶模組通電測試.......................... 22 3-5-1 通電實驗配置............................... 22 3-5-2 通電試片之界面微觀組織觀察及成分分析........... 22 第四章 實驗結果.................................. 32 4-1 Sn-Zn合金微觀組織及電性量測................... 32 4-2 光伏銅帶的界面微觀組織觀察..................... 32 4-3 光伏模組之剝離力測試與界面微觀組織.............. 33 4-3-1 光伏模組之剝離力測試........................ 33 4-3-2 光伏模組之界面微觀組織觀察................... 33 4-4 光伏銅帶模組之體電阻及通電後界面微觀組織......... 35 4-4-1 光伏模組之體電阻........................... 35 4-4-2 光伏模組長時間通電後之界面微觀組織............ 35 第五章 討論...................................... 56 5-1 Zn對銲錫電性及界面微觀組織之影響................ 56 5-2 Zn含量及回銲時間對光伏模組之影響................ 57 5-2-1 Zn含量及回銲時間對光伏模組界面組織之影響....... 57 5-2-2 Zn含量及回銲時間對光伏模組剝離測試結果之影響.... 58 5-2-3 Zn含量對光伏模組體電阻之影響................. 59 第六章 結論...................................... 63 參考文獻......................................... 64

    1.邱黛汶,「Sn-xAg-0.5Cu合金應用於光伏焊帶之適用性探討及界面微觀組織解析」,國立成功大學碩士論文,民國101年。
    2.林奕安,「鋅基高溫無鉛銲錫合金開發及其性質之研究」,國立成功大學碩士論文,民國98年。
    3.周雅靜,陳興華,王正全,「太陽電池串接材料PV Ribbon製造方法簡介」,工業材料,第285期,(2010)。
    4.翁敏航,「太陽能電池-原理、元件、材料、製程與檢測技術」,東華書局,民國99年,83-92頁。
    5.H. Wirth, “Tabbing-stringing quality control challenges”, Photovoltaics International, vol. 9, (2010), pp. 160-169.
    6.Y. Endo, T. Tsuji, H. Akutsu, T. Kimura, K. Sawahata, H. Bando, “Development of solder-coated, soft-annealed copper flat wire for photovoltaic systems”, Hitachi Cable Review, no. 26, Augst, (2007), pp. 1-4.
    7.M. Hansen, K. Anderko, Constitution of Binary Alloys Second Edition, McGraw-Hill Book Company, (1989), p. 1106.
    8.G. Zeng, S. McDonald, K. Nogita, “Development of high-temperature solders: Review”, Microelectronics Reliability, vol. 52, (2012), pp. 1306-1322.
    9.鍾崇燊、柯捷男,「可怕的鉛污染」,科學發展,第357期,(2009),52-55頁。
    10.K. N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, vol. 41, (1973), pp. 347-354.
    11.K. N. Tu, J. C. M. Li, “Spontaneous whisker growth on lead-free solder finishes”, Materials Science and Engineering: A, vol. 409, (2005), pp. 131-139.
    12.M. Hansen, K. Anderko, Constitution of Binary Alloys Second Edition, McGraw-Hill Book Company, (1989), p. 52.
    13.Ag-Cu-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    14.K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion in Solid State and Materials Science, vol. 5, (2001), pp. 55-64.
    15.F. W. Gayle, G. Becka, J. Badgett, G. Whitten, T. Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, C. Olson, “High temperature lead-free solder for microelectronics”, JOM, vol. 53, (2001), pp.17-21.
    16.D. R. Frear, S. N. Burchett, H. S. Morgan, J. H. Lau, The Mechanics of Solder Alloy Interconnects, p. 60.
    17.Y. Tian, Q. M. Zhang, Z. Q. Li, “Electrical transport properties of Ag3Sn compound”, Solid State Communications, vol. 151, (2011), pp. 1496-1499.
    18.X. Wei, H. Huang, L. Zhou, M. Zhang, X. Liu, “On the advantages of using a hypoeutectic Sn–Zn as lead-free solder material”, Materials letters, vol.61, (2007), pp. 655-658.
    19.M. Hansen, K. Anderko, Constitution of Binary Alloys Second Edition, McGraw-Hill Book Company, (1989), p. 1217.
    20.G. A. Lan, C. W. Yang, T. S. Lui, L. H. Chen, “Effect of zinc content on microstructural evolution and electrification-fusion-induced failure mechanism of Sn-xZn alloys”, Materials Transactions, vol. 52, (2011), pp. 54-60.
    21.G. A. Lan, T. S. Lui, L. H. Chen, “The role of eutectic phase and acicular primary crystallized Zn phase on electrification-fusion induced fracture of Sn-xZn solder alloys”, Materials Transactions, vol. 52, (2011), pp. 2111-2118.
    22.劉乃碩,「添加鎵元素對錫鋅銀鋁無鉛銲錫各種性質影響之研究」,國立成功大學博士論文,民國96年。
    23.余昌和,「錫鋅銀銲錫合金元素在焊錫過程對銅金屬反應影響之研究」,國立成功大學博士論文,民國95年。
    24.劉培基,「錫鋅系銲錫與銀基材之界面反應」,國立成功大學碩士論文,民國93年。
    25.M. Hansen, K. Anderko, Constitution of Binary Alloys Second Edition, McGraw-Hill Book Company, (1989), p. 649.
    26.K. Suganuma, K. Niihara, T. Shoutoku, Y. Nakamura, “Wetting and interface microstructure between Sn–Zn binary alloys and Cu”, Journal of Materials Research, vol. 13, (1998), pp. 2859-2865.
    27.J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, K. Hagio, “Interfacial properties of Zn–Sn alloys as high temperature lead-free solder on Cu substrate”, Materials Transactions, vol. 46, (2005), pp.2413-2418.
    28.K. L. Lin, C. L. Shih, “Wetting interaction between Sn-Zn-Ag solders and Cu”, Journal of Electronic Materials, vol. 32, (2003), pp.95-100.
    29.J. M. Song, P. C. Liu, C. L. Shih, K. L. Lin, “Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering”, Journal of Electronic Materials, vol. 34, (2005), pp.1249-1254.
    30.C. Y. Liu, C. Chen, C. N. Liao, K. N. Tu, “Microstructure- electromigration correlation in a thin stripe of eutectic SnPb solder stressed between Cu electrodes”, Applied Physics Letters, vol. 75, (1999), pp. 58-60.
    31.S. Nieland, M. Baehr, A. Boettger, A. Ostmann, H. Reichl, “Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells”, 22nd European Photovoltaic Solar Energy Conference and Exhibition, (2007).
    32.蕭奕達,「應變速率對不同回銲次數之Sn-9Zn/Cu拉伸破壞性質的影響」,國立成功大學碩士論文,民國101年。
    33.M. Hansen, K. Anderko, Constitution of Binary Alloys Second Edition, McGraw-Hill Book Company, (1989), p. 62.
    34.R. W. Cahn, E. A. Davis, I. M. Ward, The Electrical Resistivity of Metals and Alloys, Cambridge University Press, p.220.
    35.C. W. Huang, K. L. Lin, “Interfacial reactions of lead-free Sn–Zn based solders on Cu and Cu plated electroless Ni–P/Au layer under aging at 150 °C ”, Journal of Materials Research, vol. 19, (2004), pp. 3560-3568.
    36.邱盈達,「錫鋅系無鉛銲錫與基材接合反應行為研究」,國立成功大學碩士論文,民國93年。
    37.K. Suganuma, T. Murata, N. Noguchi, Y. Toyoda, “Heat resistance of Sn-9Zn solder/Cu interface with or without coating”, Journal of Material Research, vol. 15, (2000), pp. 884-891.

    下載圖示 校內:2018-08-09公開
    校外:2018-08-09公開
    QR CODE