研究生: |
楊蕙瑜 Yang, Hui-Yu |
---|---|
論文名稱: |
以室溫共沉法製備Bi2-xVxO3+x粉末應用於固態電解質之研究 Room temperature precipitation of Bi2-xVxO3+x powder for solid electrolytes |
指導教授: |
吳毓純
Wu, Yu-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 化學共沉法 、氧化鉍 、釩 、導電性 |
外文關鍵詞: | chemical precipitation, g-Bi2O3, Vanadium, conductivity |
相關次數: | 點閱:86 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用化學共沉法作為製程,選用氯化鉍(BiCl3) 以及偏釩酸銨(NH4VO3)作為前驅鹽、氫氧化鈉作為沉澱劑於室溫下合成γ相Bi2-xVxO3+x粉末,並藉由改變Bi2-xVxO3+x粉末中釩的添加量,觀察其對導電性質的影響。
首先觀察在不同氫氧化鈉對鉍離子之化學計量比下([NaOH]/Bi = N),對合成Bi2-xVxO3+x粉末之影響。由XRD與SEM結果顯示,唯有在控制N為80及160的條件下,方能合成出立方體型態之γ相氧化鉍結構。在改變反應時間觀察反應機制的研究方面,由XRD結果顯示對應γ相氧化鉍的繞射峰隨著反應時間增加而往高角度偏移,並於反應12小時後不再偏移,顯示已達固溶平衡所致。在改變釩於Bi2-xVxO3+x中的添加量的研究方面,由XRD與SEM結果顯示,當釩添加量為x<0.03時,為柱狀型態之α相與立方型態之γ相氧化鉍兩相共存;當釩的添加量增加至x>0.1後,產物則為單一相γ相氧化鉍結構,顯示釩的添加有助於穩定γ相氧化鉍結構。最後將粉末造粒後壓胚並燒結緻密,觀察不同釩添加量之粉末的導電性質。由熱重/熱差分析結果顯示,在約830 °C有一γ相氧化鉍相轉換成δ相氧化鉍造成之吸熱峰,因此本研究選用800 °C作為燒結溫度。由XRD結果顯示,當釩的添加量為x = 0.1、0.2、0.3與0.4時,其燒結體仍為γ相氧化鉍結構;而在釩的添加量為x = 0.5時,其燒結體出現二次相的生成,主要是由於V含量超過γ相氧化鉍結構之固溶極限所導致。經由阿基米德密度量測發現在燒結24小時後之燒結體其相對密度可達90%以上。最後將摻雜不同釩添加量之Bi2-xVxO3+x燒結體進行直流阻抗分析,發現導電率隨著釩添加量的增加而提升,主要是由於5價釩離子在取代3價鉍離子時,會伴隨著一個間隙氧離子的產生,進而提升導電性質。並在釩添加量為x = 0.4的樣品於800 °C操作溫度下,其導電性可達0.0075 S/cm;然而由於二次相生成,在釩添加量為x = 0.5時的導電性有顯然下降的趨勢。
In the present work, phased Bi2-xVxO3+x powder has been prepared via chemical precipitation using bismuth chloride (BiCl3) and ammonium metavanadate (NH4VO3) as starting materials while NaOH was applied as the precipitating agent. The precipitation was performed under room temperature.
In the first part of this study, the influence of the NaOH/Bi (N) ratio, on the phase composition of the precipitate was investigated. XRD and SEM results revealed that phase Bi2-xVxO3+x crystals in cubic morphology could be only obtained at a N ratio above 80.; otherwise, BiOCl3 was coexisted. The second part is to observe their reaction mechanism by changing the reaction time. According to the time-resolved experiment, XRD peaks of the precipitate showed a shift to the higher degree due to the incorporation of V5+ ions into the g-Bi2O3 structure with increasing the reaction time. The peak shift became unchanged after reacting for 12 hours, implying that the introduction of V5+ ions was limited. In the third part of this study, the doping ratio of V5+ (Bi2-xVxO3+x, x = 0.01 – 0.5) was varied. The XRD and SEM characterizations showed that some rod-like crystals corresponding to the α phased Bi2O3 was coexisted when the V5+ doping ratio was less than x = 0.03. With increasing V5+ doping ratio, the amount of g-Bi2O3 in cubic morphology gradually increased and became the unique phase when the V5+ doping ratio was more than x = 0.1. According to the DTA/TG investigation, an endothermic peak was observed at 830 °C which is related to the transformation of g-Bi2O3 to d-Bi2O3. Accordingly, the compacts of the synthesized Bi2-xVxO3+x, (x = 0.1 – 0.5) powders were sintered at 800ºC for 24 h to increase the bulk density higher than 90%. It was shown that the sintering treatment did not change the phase composition for Bi2-xVxO3+x, (x = 0.1 – 0.4); however a second phase related to a new cubic-structure Bi2O3 (JCPDS 74-1373) was appeared for Bi2-xVxO3+x (x = 0.5). It implied that this second phase could be only formed under high temperature.
The ion electric conductivity of Bi2-xVxO3+x (x = 0.1 – 0.5) sintering bodies was measured by DC method. It was observed that the conductivity increased with increasing the amount of V5+ up to x = 0.4. When Bi3+ was replaced by V5+, interstitial oxygen ions were produced in order to reach the structural charge balance that promoted the conductivity. The conductivity was attained 0.0075 S/cm at 800 °C for Bi2-xVxO3+x (x = 0.4) and abruptly decreased for Bi2-xVxO3+x (x = 0.5) mainly due to the formation of second phase.
1. 黃鎮江,燃料電池,滄海書局
2. N. Q. Minh, “Ceramic Fuel Cells,” America Ceramic Society, 76, 563(1993).
3. 發行人葉惠青,2010能源產業技術白皮書,台北:經濟部能源局,2010, 第341頁。
4. B.C.H. Steele and A. Heinzel, “Material for fuel-cell technologies,” Chemistry of Nature, 414, 345-352(2001).
5. N. Q. Minh and T. Takahashi, “ Science and Technology of Ceramic Fuel Cells,” Elsevier Science B. V. (1995)
6. 衣寶廉,燃料電池-原理與應用,台北:五南圖書出版公司,2005。
7. Fuel Cell Handbook, Fifth Edition (2000).
8. H. Song, C. Xia, G. Meng and D. Peng, “Preparation of GdO doped CeO thin films by oxy-acetylene combustion assisted aerosol-chemical vapor deposition technique on various substrates and zone model for microstructure,” Thin Solid Films, 434, 244-249(2003).
9. T. Kato, K. Matsumoto, H. Matsubara, Y. Ishiwata, H. Saka, T. Hirayama and Y. Ikuhara, “Transmission electron microscopy characterization of a Yttria-stabilized zirconia coating fabricated by electron beam-physical vapor deposition,” Surface & Coatings Technology, 194, 16-23(2005).
10. L. G. Sillén, ”X-ray studies on bismuth trioxide,” Arkiv för Kemi, Mineralogi och Geologi, 12A(18), 1-13(1937).
11. B. Aurivillius and L. G. Sillén, “Polymorphy of bismuth trioxide,” Nature, 155(3932), 305-306(1945).
12. C. N. R. Rao, G. V. S. Rao and S. Ramdas, ”Phase Transformations and Electrical Properties of Bismuth Sesquioxide,” Physical Chemistry, 73(3), 672-675(1969).
13. R. Matsuzaki, H. Masumizu and Y. Saeki, “The phase transition of bismuth(III) oxide prepared by the thermal decomposition of bismuth sulfate,” Bulletin of the Chemical Society of Japan, 42, 578-579, (1974).
14. R. Matsuzaki, H. Masumizu and Y. Saeki, “The phase transition of bismuth(III) oxide prepared by the thermal decomposition of bismuth sulfate,” Bulletin of the Chemical Society of Japan, 48, 3397-3398, (1975).
15. E. M. Levin and C. L. McDaniel, “Heats of transformation in bismuth oxide by differential thermal analysis,” National Bureau Standards, 69A, 237-243(1965).
16. N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Bismuth based Oxide Electrolytes-Structure and Ionic Conductivity,” Journal of the European Ceramic Society, 19, 1801-1826(1999).
17. A. Cabot, A. Marsal, J. Arbiol and J.R. Morante, “Bi2O3 as a selective sensing material for NO detection,” Sensors and Actuators B, 99, 74-89(2004).
18. L. Zhang, W. Z. Wang, J. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou and S. W. Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst,” Applied Catalysis A, 308, 105-110(2006).
19. H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide.” Thermochimica Acta, 28, 121-131(1979).
20. T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conduction in sintered bismuth oxide containing strontium oxide, calcium oxide, or lanthanum oxide,” Applied Electrochemistry, 2, 97-104(1972).
21. R. Mansfield, “The electrical properties of bismuth oxide,” Proceedings of the Physical Society, London, 62B, 478-483(1949).
22. K. Hauffe and H. Peters, “Conductivity measurements in the system bismuth (III) oxide,” Zeitschrift fuer Physika-lische Chemie, 201, 121-209(1952).
23. A. Laarif and F. Theobald, “The lone pair concept and the conductivity of bismuth oxides Bi2O3,” Solid State Ionics, 21, 183-193(1986).
24. J. C. Boivin and G. Mairesse, “Recent Material Developments in Fast Oxide Ion Conductors,” Chemistry of Materials, 10, 2870-2888(1998).
25. T. Fries, G Lang and S. Kemmler-Sack, “Defect fluorite structures in the Bi-rich part of the system Bi2O3-Re2O7,” Solid State Ionics, 89, 233-240(1996).
26. R. S. Roth, N. M. Hwang and C. J. Raw, B. P. Burton and J. J. Ritter, “Phase Equilibriain the Systems CaO and CaO-Bi2O3,” Journal of the American Ceramic Society, 74, 2148-51(1991).
27. R. K. Dattaand and J. P. Meehan, “The System Bi2O3-R2O3 (R=Y,Gd),” Zeitschrift für Anorganische und Allgemeine Chemie, 383, 328-337(1971).
28. C. N. R. Rao, G. V. S. Rao and S. Ramdas, “Phase Transformations and Electrical Properties of Bismuth Sesquioxide,” Physical Chemistry, 73, 672-675(1969).
29. T. Takahashi, H. Iwahara and T. Arao, “High Oxide Ion Conduction in Sintered Oxides of the System Bi2O3-Y2O3,” Applied Electrochemistry, 5, 187-195(1975).
30. V. Joshi, S. Kulkarni, J. Nachlas, J. Diamond and N. Weber, “Phase Stability and Oxygen Transport Characteristics of Yttria- and Niobia- Stabilized BismuthOxide,” Materials Science, 25, 1237-1245(1990).
31. M. J. Verkerk, K. Keizer and A. J. Burgraff, “High Oxygen Ion Conduction in Sintered Oxides of the Bi2O3-Er2O3 System,” Applied Electrochemistry, 10, 81-90(1980).
32. T. Takahashi, H. Iwahara and T. Esaka, “High oxide ion conduction in sintered oxide of the system Bi2O3-M2O5,” Electrochemical Society, 124, 1563-1569(1977).
33. H. Iwahara, T. Esaka, T. Sato and T., “Formation of High Oxide Ion Conductive Phases in the Sintered Oxides of the System Bi2O3-Ln2O3 (Ln= La-Yb),” Solid State Chemistry, 39, 173-180(1981).
34. T. S. Sheu, J. Xu and T. Y. Tien, “Phase Relationships in the ZrO2-Sc2O3 and ZrO2-In2O3 Systems,” Journal of the American Ceramic Society, 76, 2027-2032(1993).
35. T. S. Sheu, “An isotropic Thermal Expansion of Tetragonal Zirconia Polycrystals,” Journal of the American Ceramic Society, 76, 1772-1776(1993).
36. T. S. Sheu, T. Y. Tien and I. W. Chen, “Cubic to Tetragonal(t') Transformation in Zirconia Containing Systems,” Journal of the American Ceramic Society, 75, 1108-1116(1992).
37. S. F. Radaev, V. I. Simonov and Yu. F. Kargin,” Structural features of γ-phase Bi2O3 and its place in the sillenite family” Acta Crystallographica B, 48, 604-609(1992).
38. J. H. Liou, P. J. Liou and T. S. Sheu, “Physical Properties and Crystal Chemistry of Bismuth Oxide Solid Solution,” Ceramic Transactions, 109, 3-10(2000).
39. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides,”Acta Crystallographica A, 32, 751-767(1976).
40. T. S. Sheu, Y. J. Wang and C. J. Wu, “Phase Stability of Solid Solution in Bismuth Oxide and Indium Oxide Plus Rare Earth Oxide System,” Journal of the American Ceramic Society, December 2002.
41. T. S. Sheu and T. W. Huang, “Phase Stabilization of Bismuth-Oxide-Rich Solid Solution in Bi2O3-CaO-MgO System,” Journal of the American Ceramic Society, December 2002.
42. H. T. Cahen, T. G. M. Van Den Belt, J. H. W. De Wit and G. H. J. Broers, “The Electrical conductivity of δ-Bi2O3 Stabilized by isovalent Rare-Earth Oxides R2O3,” Solid State Ionics, 1, 411-423(1980).
43. T. Takahashi, T. Esaka and H. Iwahara, “Oxide ion conduction in the sintered oxides of MoO3-doped Bi2O3,” Applied Electrochemistry, 7, 31-35(1977).
44. H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ and δ phases of bismuth sesquioxide,” Solid State Chemistry, 26, 265-274(1978).
45. T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3,” Applied Electrochemistry, 2, 97-104(1972).
46. M. Miyayama, S. Katsuta, Y. Suenaga and H. Yanagida, “Electrical Conduction in β-Bi2O3 Doped with Sb2O3,” Journal of the American Ceramic Society, 66, 585-588(1983).
47. G. Chiodelli, A. Magistris, G. Spinolo, C. Tomasi, V. Antonucci and N. Giordano, “Electrical properties in the Bi-rich part of the Bi, Mo/O system,” Solid State Ionics, 74, 37-45(1994).
48. T. Mori, T. Ikegami, H. Yamamura and T. Atake, “Improvement of Electrical Conductivity in Fluorite Related Y2O3 and Fluorite CeO2 Systems Based on A Unique Effective Index,” Thermal Analysis and Calorimetry, 57, 831-838(1999).
49. O. Turkoglu and M. Soylak, “The synthesis of the β and δ Phases of Bi2O3 Stabilized by Gd2O3,” Asian Journal of Chemistry, 14, 1698-1704(2002).
50. O. Turkoglu, M. Soylak and I. Belenli, “Synthesis and Characterization of β Type Solid Solution in the Binary System of Bi2O3-Eu2O3,” Bulletin of Materials Science, 25 585-588(2002).
51. M. Miyayama and H. Yanagida, “Oxygen ion conduction in γ-Bi2O3 doped with Sb2O3,” Material Science, 21, 1233-1236(1986).
52. J. K. Reddy, B. Srinivas, V. D. Kumari and M. Subrahmanyam, “Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis,” ChemCatChem, 1, 492-496(2009).
53. X. Gou, R. Li, G. Wang, Z. Chen and D. Wexler, “Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application,” Nanotechnology, 20, 495-501(2009).
54. Y. Wang, J. Z. Zhao and Z. C. Wang, “A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process,” Colloids and Surfaces A, 377, 409-413(2011).
55. H. Jing, X. Chen and X. Jiang, “Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems,” Micro & Nano Letters, 7,357-359(2012).
56. L. Huang, L. Li, T.J. Yan and G. S. Li, “Synthesis, Characterization and Photocatalytic Activity of Bi2O3,” Chinese Journal of Structural Chemistry, 28, 1458-1464(2009).
57. Q. B. Yang, Y. X. Li, Q. R. Yin, P. L. Wang and Y. B. Cheng, “Hydrothermal synthesis of bismuth oxide needles,” Material Letter, 55, 46-49(2002).
58. R. Chen, Z. R. Shen, H. Wang, H. J. Zhou, Y. P. Liu, D. T. Ding and T. H. Chen, “Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity,” Alloys and Compounds, 509, 2588-2596(2011).
59. X. Y. Chen, Z. J. Zhang and S. W. Lee, “Selective solution-phase synthesis of BiOCl, BiVO4 and δ-Bi2O3 nanocrystals in the reaction system of BiCl3-NH4VO3-NaOH,” Solid State Chemistry, 181, 166-174(2008).
60. J. Xie, X. Lu, M. Chen, G. Zhao, Y. Song and S. Lu, “The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I), Co(II)-doped Bi2O3,” Dyes and Pigments, 77, 43-47(2008).
61. C. Y. Huang, “Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials,” Ph. D. Thesis, The Pennsylvania State University, U. S. A. (1990).
62. D. Kajfez, “Computed Model Field Distribution for Isolated Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, 32, 1609-1616(1984).
63. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallographica, 22, 151-152(1967).
64. G. B. Balazs and R. S. Glass, “AC-Impedance Studies Rare-Earth-Oxides and Their Application to Solid Oxide Fuel-Cells,” Solid State Ionics, 52, 165(1995)
65. L. Huang, L. P. Li,T. J. Yan and G. S. Li, “Synthesis, Characterization and Photocatalytic Activity of Bi2O3,” Structural Chemistry, 28, 1458-1464(2009).
66. C. L. Wu, L. Shen, Q. L. Huang and Y. C. Zhang, “Hydrothermal synthesis and characterization of Bi2O3 nanowires,” Material Letter, 65, 1134-1136(2011).
67. L. Huang, L. P. Li, T. J. Yan and G. S. Li, “Synthesis, Characterization and Photocatalytic Activity of Bi2O3,“ Structural Chemistry, 28, 1458-1464(2009).
68. F. D. Hardcastle, I. E. Wachs, H. Eckert and D. A. Jefferson, “Vanadium(V) Enviroments in Bismuth Vanadates : A Structrural Investigation Using Raman Spectroscopy and Solid State 51V NMR,” Solid state chemistry, 90, 194-210(1991).
69. R. A. Morales-Luckie and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacίo, 18, 4-8(2005).
70. O. Turkoglu and I. Belenli, “Electrical conductivity of γ-Bi2O3-V2O5 Solid Solution,” Thermal Analysis and Colarimetry, 73, 1001-1012(2003).
71. A. R. West, Basic Solid State Chemistry, 390, 64(1988)
72. Y. C. Wu, Y. C. Chaing, C. Y. Huang, S. F. Wang and H. Y. Yang, “Morphology- controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance,” Dye Pigment, 98, 25-30(2013).
73. T. I. Mel’nikova, G. M. Kuz’micheva, V. B. Rybakov, N. B. Bolotina and A. B. Dubovskii, “Structure of Phases of the Sillenite Family in the Bi2O3-V2O5 System ,“ Crystallography Reports, 56, 227-232(2011).
74. İ. Taşcığlu, M. Arı, İ. Uslu, S. Kocyiğit, Y. Dağdemir, V. Çorumlu and Ş. Altındal, “Temperature dependent conductivity and structural properties of sol-gel prepared holmium doped Bi2O3 nanoceramic powder,” Ceramics International, 38, 6455-6460(2012).
75. A. Watanabe, “Is it possible to stabilize δ-Bi2O3 by an oxide additive?” Solid State Ionic, 40/41, 889-892(1990).
76. L. Zhou, W. Wang, H. Xu, S. Sun and M. Shang, “Bi2O3 Hierarchical Nanostructures : Controllable Synthesis, Growth Mechanism and their Application in Photocatalysis,” Chemistry European, 15, 1776-1782(2009).
77. P. J. Gellings and H. J. M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry, 82-83(1997).
78. 黃朝琪,”氟化鈣型結構氧化鉍系固態電解質之研究”,成功大學博士論文(2006)
79. W. D. Kingery, H. K. Bowen and D.R. Uhlmann, “Introduction to ceramic,” 2nd edition, John Wiley and Sons, New York, 1976.
80. C. G. Bergeron and S. H. Risbud, “Introduction to phase equilibria in ceramics,” The Journal of the American Ceramic Society Inc., Columbus, 1984.