研究生: |
陳應誌 Chen, Ying-Chih |
---|---|
論文名稱: |
無機量子點於發光二極體及有機記憶體元件之研究 Investigation of Inorganic Quantum Dots in Light-Emitting Diodes and Nonvolatile Organic Memory Elements |
指導教授: |
蘇炎坤
Su, Yan-Kuin |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 146 |
中文關鍵詞: | 量子點 、有機記憶體 、發光二極體 、薄膜電晶體 |
外文關鍵詞: | quantum dots, organic memory, light emitting diodes, thin film transistors |
相關次數: | 點閱:98 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為無機硒化鎘/硫化鋅-核/殼量子點於發光二極體及有機記憶體元件之應用。在發光二極體應用方面,主要是利用量子點搭配無機氮化鎵發光二極體,進而達成混光效果。而在有機記憶體應用方面,量子點則擔任抓取載子的角色,從而使得元件內部的本質改變。然後因電性的改變,元件展現出優秀的非揮發性記憶體元件特性。
在發光二極體研究方面,將量子點滴入在被設置於反射碗杯內的藍光氮化鎵發光二極體晶片上面,並且根據標準發光二極體製作技術,將發光二極封裝於透明環氧樹脂裡,其中所使用的量子點含有623奈米的光激發光波長和23奈米的半高寬(FWHM)。首先我們試圖改變量子點的濃度,發現到元件的發光顏色從原本的藍光,色度座標為(0.17,0.07),轉換至紅光,色度座標為(0.29,0.14)。除此之外,也發現到量子點與綠光有機共軛高分子材料(DBPPV)適度混合調配之後,元件呈現出純白的發光顏色,其光特性具有色度座標為(0.33, 0.34)、演色性為76以及色溫為5600 K。
在記憶體研究方面,我們成功利用聚羥基甲基丙烯酸乙酯(PHEMA)和聚甲基丙烯酸甲酯(PMMA)兩種材料製作出以金屬層/絕緣層/金屬層結構為主的電阻式記憶體元件,其開關特性是由細絲傳導機制所造成。在聚羥基甲基丙烯酸乙酯裡的細絲是由碳離子所組合而成,而在聚甲基丙烯酸甲酯是由金屬離子所構成。兩元件皆展現出超過500次開關周期循環、大於104秒的保存時間以及~104的電流開關比。於電晶體式結構的研究中,我們發現以旋轉塗佈方式沉積而成的PHEMA/PMMA/PHEMA多層高分子薄膜適合使用作為薄膜電晶體裡的介電層並且所製作的元件會因PHEMA內部的氫氧基(-OH groups)展現出磁滯與記憶體特性,這是因為氫氧基會在介電層內部產生載子抓取以及極化效應,元件具備超過2小時的保存時間以及可靠的開關特性。至於量子點於電晶體式記憶體元件的應用研究方面,n+型矽(閘極電極)/氧化矽(介電層)/量子點-聚甲基丙烯酸甲酯混合物(浮動閘)/並五苯(通道層)/金(源極及汲極層)為主要結構,量子點扮演抓取載子的重要角色,則聚甲基丙烯酸甲酯為位障,其元件具有超過五十次無衰退的開關特性,但是因為通道層和混合層之間存在著較低的位障,所以元件展現出較短的保存時間,在106秒之後發現儲存於混合層裡的電荷會完全流失。
The main purpose of this dissertation was the application of the inorganic CdSe/ZnS core/shell quantum dots (QDs) in the light emitting diodes (LEDs) and organic nonvolatile memory devices. For the application in LEDs, QDs were effectively integrated into the inorganic gallium nitride-based LEDs to realize mixing light effect. For the application in organic memory devices, QDs played the role of carrier trapping, thus making the changing of the intrinsic nature of the device. Then, due to the electrical changes, the device would exhibit the nonvolatile memory properties.
In the research on LEDs, QDs were dropped on the LED chip mounted in the reflection cup. And based on the standard LED fabrication technique, the LEDs were encapsulated in the transparent epoxy resin. The used QDs had a photoluminescence (PL) emission peak at 623 nm with the full-widths at half-maximum (FWHM) of 23 nm. It was firstly observed that the luminescence color was changed from the blue light (Commission Internationale de l’Eclairage (CIE) chromaticity coordinates: x, y = 0.17, 0.07) to red light (CIE chromaticity coordinates: x, y = 0.29, 0.14) with increasing the concentration of QDs. Moreover, it was also observed that after QDs were appropriately mixed with the green conjugated conducting polymers (DBPPV), the devices exhibited pure white light emission and had the CIE chromaticity coordinates of (0.33, 0.34), color rendering index (CRI) of 76 and correlated color temperature (CCT) of 5600K.
In the study on organic memory devices, poly (2-hydroxyethyl methacrylate) (PHEMA) and poly(methylmethacrylate) (PMMA) were successfully used in the fabrication of the resistive memory devices with a sandwiched structure of metal/polymer insulator/metal. The resistive switching behaviors were caused by the filament mechanism. The conductive filaments in the PHEMA and PMMA films were composed of carbon and metal ions, respectively. Both devices showed the write-read-erase-read cycles over 500 times, retention time more than 104 seconds and current ON/OFF ration (ION/OFF) of ~104. In the study of transistor-type memory, we found that the PHEMA/PMMA/PHEMA multilayer dielectric formed by a spinning coating technique was suitably used as the dielectric layer of thin film transistors (TFTs). Furthermore, the fabricated devices also showed the hysteresis and memory characteristics because the carrier trapping and polarization effect were caused in the multi-dielectric layers by the hydroxyl (-OH) groups of PHEMA. The long retention time (longer than 2 hours) and reliable switching endurance were clearly observed. As for the research on application for QDs in the transistor-type memory, n+-Si (gate electrode)/SiO2 (dielectric layer)/QD-PMMA composites (floating gate layer)/ pentacene (channel layer)/gold (source and drain electrodes) was used as the main structure of devices. The switching mechanism was attributed to the charge trapping effect of the QD-PMMA composite. The devices exhibited the reliable switching endurance over 50 write-read-erase-read cycles. Nevertheless, the short retention time was obtained because the low barrier was existed between the channel and composite layers. From the experimental data, it could be speculated that the residual charges in composite layer were neglectable after 106 seconds.
[1] S. Neeraj, N. Kijima, and A.K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. vol. 387, pp. 2-6, 2004.
[2] X. Zhao, X. Wang, B. Chen, Q. Meng, W. Di, G. Ren, and Y. Yang, “Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) application,” j. All. Comp., vol. 433, pp. 352-355, 2007
[3] Z. C. Wu, J. Liu, W. G. Hou, J. Xu, and M. L. Gong, “A new single-host white-light-emitting BaSrMg(PO4)2: Eu2+ phosphor for white-light-emitting diodes,” j. All. Comp.,vol. 498, pp. 139–142, 2010.
[4] P. Uthirakumar, Y. S. Lee, E. K. Suh, and C. H. Hong, “Hybrid fluorescent polymer–zinc oxide nanoparticles: Improved efficiency for luminescence conversion LED,” J. Lumines., vol. 128, pp. 287-296, 2008.
[5] X. Wang, W. Li and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem., vol. 21, pp. 8558-8565, 2011
[6] Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, “Polymer electronic memories: Materials, devices and mechanisms,” Prog. Polym. Sci., vol. 33, pp. 917–978, 2008.
[7] Th. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, “Nonvolatile organic field-effect transistor memory element with a polymeric gate electret,” Appl. Phys. Lett., vol. 85, pp. 5409-5411, 2004.
[8] W. Wang and D. Ma, “Organic floating-gate transistor memory based on the structure of pentacene/nanoparticle-Al/Al2O3,” Appl. Phys. Lett., vol. 96, pp. 203304-1-3, 2010.
[9] S. Das and J. Appenzeller, “FETRAM. An Organic Ferroelectric Material Based Novel Random Access Memory Cell,” Nano Lett., vol. 11, pp. 4003–4007, 2011
[10] M. Kanoun, A. Souifi, T. Baron, and F. Mazen, “Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications,” Appl. Phys. Lett., vol. 84, pp. 5079-5081, 2004.
[11] H. Ha and O. Kim, “Bipolar switching characteristics of nonvolatile memory devicesbased on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) thin film,” Appl. Phys. Lett., vol. 93, pp. 033309-1-3, 2008.
[12] P. Y. Lai and J. S. Chen, “Electrical bistability and charge transport behavior in Au nanoparticle/poly(N-vinylcarbazole) hybrid memory devices,” Appl. Phys. Lett., vol. 93, pp. 153305-1-3, 2008.
[13] P. O. Sliva, G Dir, and C Griffiths, “Bistable switching and memory devices,” J Non-Cryst Solids, vol. 2, pp. 316–33, 1970.
[14] H. Carchano, R. Lacoste, and Y. Segui, “Bistable electrical switching in polymer thin films,” Appl. Phys. Lett., vol. 19, pp. 414-415, 1971.
[15] N. Yamauchi, “A metal-insulator-semiconductor (MIS) device using a ferroelectric polymer thin film in the gate insulator,” Jpn. J. Appl. Phys., vol. 25, pp. 590-594, 1986.
[16] T. J. Reece, S.Ducharme, A. V. Sorokin, and M. Poulsen, “Nonvolatile memory element based on a ferroelectric polymer Langmuir–Blodgett film,” Appl. Phys. Lett., vol. 82, pp.142-144, 2003.
[17] R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, “Organic Nonvolatile Memory Devices Based on Ferroelectricity,” Adv. Mater., vol. 22, pp. 933-945, 2010
[18] H. Faber, M. Burkhardt, A. Jedaa, D. Ka¨lblein, H. Klauk, and M. Halik, “Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles,” Adv. Mater., vol. 21, pp. 3099–3104, 2009.
[19] C. Novembre, D. Guérin, K. Lmimouni, C. Gamrat, and D. Vuillaume, “Gold nanoparticle-pentacene memory transistors,” Appl. Phys. Lett., vol. 92, pp. 103314-1-3, 2008.
[20] S. Moller, C. Perlov, W. Jackson, C. Taussig and S. R. Forrest, “A polymer/semiconductor write-once read-many-times memory,” Nature, vol. 426, pp. 166-169, 2003
[21] G. Liu, Q. D. Ling, E. T. Kang, and K. G. Neoh, “Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites,” J. Appl. Phys., vol. 102, pp. 024502-1-8, 2007.
[22] J. Lin and D. Ma, “The morphology control of pentacene for write-once-read-many-times memory devices,” J. Appl. Phys., vol. 103, pp. 024507-1-4, 2008.
[23] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater., vol. 15, pp. 2854-2860, 2003.
[24] B. Pan, R. He, F. Gao, D. Cui, Y. Zhang, “Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine,” J. Cryst. Growth, vol. 286, pp. 318-323, 2006.
[25] C. d. M. Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, and A. Meijerink, “Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals,” J. Phys. Chem. B, vol. 107, pp. 489-496, 2003.
[26] S. Granier, S. Kim, A. M. Shafer, V. R. P. Ratnala, J. J. Fung, R. N. Zare, and B. Kobilka, “Structure and Conformational Changes in the C-terminal Domain of theβ2-Adrenoceptor,” J. Biologi. Chemi., vol. 282, pp. 13895–13905, 2007.
[27] P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett., vol. 2, pp. 781-784, 2002.
[28] Y. C. Chen, C. Y. Huang, Y. K. Su, W. L. Li, C. H. Yeh, and Y. C. Lin, “The hybridization of CdSe/ZnS quantum dot on InGaN light-emitting diodes for color conversion ,” IEEE Trans. on Nanotechnol., vol. 7, pp. 503-507, 2008.
[29] Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, ”White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys., vol. 97, pp. 113501-1-4, May 2005.
[30] C. H. Chen, S. J. Chang, and Y. K. Su, “InGaN/GaN multiple-quantum-well dual-wavelength near-white light emitting diodes,” Phys. Stat. Sol., vol. 1, pp. 2257-2260, 2003.
[31] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, and J. M. Tsai, “Si and Zn co-doped InGaN-GaN white light-emitting diodes”, IEEE Trans. Electron Devices, vol. 50, pp. 519-521, 2003.
[32] Y. Li, A. Rizzo, R. Cingolani, and G. Gigli, “White-light-emitting diodes using semiconductor nanocrystals,” Microchim Acta, vol. 159, pp. 207–215, 2007.
[33] H. Song and S. Lee, “Photoluminescent (CdSe)ZnS quantum dot–polymethylmethacrylate polymer composite thin films in the visible spectral range,” Nanotechnol., vol. 18, pp. 055402-1-6, 2007.
[34] M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-base light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett., vol. 6, pp. 1396-1400, 2006.
[35] D. Cui, J. Xu, S. Y. Xu, G. Paradee, B. A. Lewis, and M. D. Gerhold, “Infrared photodiode based on colloidal PbSe nanocrystal quantum dots,” IEEE Trans. Nanotechnol., vol. 5, no. 4, pp. 362-366, 2006.
[36] C. Y. Huang, Y. K. Su, T. C. Wen, T. F. Guo, and M. L. Tu, “Single-layered hybrid DBPPV-CdSe/ZnS quantum dot light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, pp. 282-284, 2008.
[37] A. Rizzo, Y. Li, S. Kudera, F. D. Sala, M. Zanella, W. J. Parak, R.Cingolani, L. Manna, and G. Gigli, “Blue light emitting diodes based on fluorescent CdSe/ZnS nanocrystals,” Appl. Phys. Lett., vol. 90, pp. 051106-1-3, 2007.
[38] I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labeling and sensing,” Nature Mater., vol. 4, pp. 435-446, 2005.
[39] R. Freeman, R. Gill, M. Beissenhirtz, and I. Willner, “Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing,” Photochem. Photobiol. Sci., vol. 6, pp. 416-422, 2007.
[40] H. S. Chen, C. K. Hsu, and H. Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett., vol. 18, pp. 193-195, 2006.
[41] R. Peon, G. Doluweera, I. Platonova, and G. Irvine-Halliday, “Solid State Lighting for the Developing World - The Only Solution,”Proc. SPIE, vol. 5941, pp. 59410N-1-15, 2005.
[42] G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett., vol. 87, pp. 103505-1-3, 2005.
[43] S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett., vol. 92, pp. 031102-1-3, 2008
[44] H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnol., vol. 19, pp. 145202-1-4, 2008.
[45] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett., vol. 88, pp. 101104-1-3, 2006.
[46] H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers ,” New J. Phys., vol. 9, pp. 362-1-13, 2007.
[47] C. Y. Huang, Y. K. Su, Y. C. Chen, P. C. Tsai, C. T. Wan, and W. L. Li, “Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes ,” IEEE Electron Device Lett., vol. 29, pp. 711-713, 2008.
[48] T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, “Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton−exciton annihilation and aggregation in MEH−PPV films,” J. Phys. Chem. B, vol. 104, pp. 237-255, 2000.
[49] C. Y. Huang, Y. K. Su, R. W. Chuang, Y. C. Chen, T. S. Huang, and C. T. Wan, “Tetrachromatic hybrid white light-emitting diodes and the energy transfer between conjugated polymers and CdSe/ZnS quantum Dots,” J. Electrochem. Soc., vol. 156, pp. H625-H628, 2009.
[50] W. J. Joo, T. L. Choi, K. H. Lee, and Y. Chung, “Study on threshold behavior of operation voltage in metal filament-based polymer memory,” J. Phys. Chem. B, vol. 111, pp. 7756-7760, 2007.
[51] T. W. Kim, S. H. Oh, H. Choi, G. Wang, H. Hwang, D. Y. Kim, and T. Lee, “Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices,” Appl. Phys. Lett., vol. 92, pp. 253308-1-3, 2008.
[52] Y. C. Chen, Y. K. Su, C. Y. Huang, H. C. Yu, C. Y. Cheng, and T. H. Chang, “Bistable resistive switching characteristics of poly(2-hydroxyethyl methacrylate) thin film memory devices,” Appl. Phys. Express, vol. 4, pp. 054204-1-3, 2011.
[53] J. H. Shim, J. H. Jung, M. H. Lee, T. W. Kim, D. I. Son, A. N. Han, S. W. Kim, “Memory mechanisms of nonvolatile organic bistable devices based on colloidal CuInS2/ZnS core–shell quantum dot–Poly(N-vinylcarbazole) nanocomposites,” Org. Electron., vol. 12, pp. 1566–1570, 2011.
[54] J. C. Ribierre, T. Aoyama, T. Muto, P. Andre, “Hybrid organic–inorganic liquid bistable memory devices,” Org. Electron., vol. 12, pp. 1800–1805, 2011.
[55] W. T. Kim, J. H. Jung, T. W. Kim, and D. I. Son, “Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites,” Appl. Phys. Lett., vol. 96, pp. 253301-1-3, 2010.
[56] W. Y. Lee, T. Kurosawa, S. T. Lin, T. Higashihara, M. Ueda, and W. C. Chen, “New donor-acceptor oligoimides for high-performance nonvolatile memory devices,” Chem. Mater., vol. 23, pp. 4487–4497, 2011.
[57] X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Neoh, B. Zhang, J. H. Zhu, and Y. X. Li, “Conjugated-Polymer-Functionalized Graphene Oxide: Synthesis and Nonvolatile Rewritable Memory Effect,” Adv. Mater., vol. 22, pp. 1731–1735,2010.
[58] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, “Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret,” Adv. Mater., vol.18, pp. 3179–3183, 2006.
[59] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, pp. 122101-1-3, 2005.
[60] F. Li, D. I. Son, H. M. Cha, S. M. Seo, B. J. Kim, H. J. Kim, J. H. Jung, and T. W. Kim, “Memory effect of CdSe/ZnS nanoparticles embedded in a conducting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] polymer layer,” Appl. Phys. Lett., vol. 90, pp. 222109-1-3, 2007.
[61] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, “Switching characteristics of Cu2O metal-insulator-metal resistive memory,” Appl. Phys. Lett., vol. 91, pp. 123517-1-3, 2007.
[62] X. B. Yan, K. Li, J. Yin, Y. D. Xia, H. X. Guo, L. Chen, and Z. G. Liu, “Nonvolatile memories with dual-layer nanocrystalline ZnO embedded Zr-doped HfO2 high-k dielectric,” Electrochem. Solid-State Lett., vol. 13, pp. H83-H86, 2010.
[63] W. J. Joo, T. L. Choi, J. Lee, S. K. Lee, M. S. Jung, N. Kim, and J. M. Kim, “Metal filament growth in electrically conductive polymers for nonvolatile memory application,” J. Phys. Chem. B, vol.110, pp. 23812–23816, 2006.
[64] A. Stikeman, “Polymer memory: the plastic path to better data storage,”Technol. Rev., vol. 105, pp. 31–131, 2002.
[65] W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, N. Bodzin, and Y. Yang, “Direct observation of localized conduction pathways in photocrosslinkable polymer memory,” J. Appl. Phys., vol. 105, pp. 124516-1-5, 2009.
[66] B. Lei, W. L. Kwan, Y. Shao, and Y. Yang, “Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices,” Org. Electron., vol. 10, pp. 1048-1053,2009
[67] L. F. Pender and R. J. Fleming, “Memory switching in glow discharge polymerized thin films,” J. Appl. Phys., vol. 46, pp. 3426-3431, 1975.
[68] Y. Sakai, Y. Sadaoka, and G. Okada, “Switching in polystyrene and polymethyl methacrylate thin films: effect of preparation conditions of the polymers,” J. Mater. Sci., vol. 19, pp. 1333-1338, 1984
[69] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, “Polyaniline nanofiber/gold nanoparticle nonvolatile memory,” Nano Lett., vol. 5, pp. 1077-1080, 2005.
[70] D. M. Kim, S. Park, T. J. Lee, S. G. Hahm, K. Kim, J. C. Kim, W. Kwon, and M. Ree, “Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide,” Langmuir, vol. 25, pp. 11713–11719, 2009.
[71] Q. Liu, W. H. Guan, S. B. Long, R. Jia, M. Liu, and J. N. Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, pp. 012117-1-3, 2008.
[72] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and Run-Wei Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett., vol.96, pp. 163505-1-3, 2010.
[73] S. Bubel, N. Mechau, H. Hahn, and R. Schmechel, “Trap states and space charge limited current in dispersion processed zinc oxide thin films,” J. Appl. Phys., vol. 108, pp. 124502-1-3, 2010.
[74] S. Baek, D. Lee, J. Kim, S. H. Hong, O. Kim, and M. Ree, “Novel Digital Nonvolatile Memory Devices Based on Semiconducting Polymer Thin Films,” Adv. Funct. Mater., vol. 17, pp. 2637-2644, 2007.
[75] W. J. Joo, T. L. Choi, and K. H. Lee, “Embossed structure embedded organic memory device,” Thin Solid Films, vol. 516, pp. 3133-3137, 2008.
[76] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” IEDM Tech. Dig., pp. 775-778, 2007.
[77] H. K. Henisch and W. R. Smith, “Switching in organic polymer films,” Appl. Phys. Lett., vol. 24, pp. 589-591, 1974.
[78] J. A. A. Nino, A. O. Sustaita, M. R. Reyes, and R. L. Sandoval, “Effect of the Thickness of Insulator Polymeric Films on the Memory Behavior: The Case of the Polymethylmethacrylate and the Polystyrene,” J. Nanotachnol., vol. 2011, pp. 702464-1-9, 2011.
[79] K. W. Han, M. H. Lee, T. W. Kim, D. Y. Yun, S. W. Kim, and S. W. Kim, “Electrical characteristics and operating mechanisms of nonvolatile memory devices fabricated utilizing core-shell CuInS2-ZnS quantum dots embedded in a poly(methyl methacrylate) layer,” Appl. Phys. Lett., vol. 99, pp. 193302-1-2, 2011.
[80] D. I. Son, C. H. You, W. T. Kim, J. H. Jung, and T. W. Kim, “Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett., vol. 94, pp. 132103-1-3, 2009.
[81] J. Lee, W. G. Hong, and H. Lee, “Non-volatile organic memory effect with thickness control of the insulating LiF charge trap layer,” Org. Electron., vol. 12, pp. 988-992, 2011.
[82] C. T. Lee, L. Z. Yu, and H. C. Chen, “Memory bistable mechanisms of organic memory devices,” Appl. Phys. Lett., vol. 97, pp. 043301-1-3, 2010.
[83] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, and S. Im, “Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics,” Appl. Phys. Lett., vol. 92, pp. 013304-1-3, 2008.
[84] S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, and T. Zyung, “Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics,” Appl. Phys. Lett., vol. 90, pp. 173512-1-3, 2007.
[85] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors,” Appl. Phys. Lett., vol. 87, pp. 243512-1-3, 2005.
[86] G. Gu, M. G. Kane, S. C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors,” J. Appl. Phys., vol. 101, pp. 014504-1-9, 2007.
[87] Y. S. Yang, S. H. Kim, J. I. Lee, H. Y. Chu, L. M. Do, H. Lee, J. Oh, T. Zyung, M. K. Ryu, and M. S. Jang, “Deep-level defect characteristics in pentacene organic thin films,” Appl. Phys. Lett., vol. 80, pp. 1595-1597, 2002.
[88] T. Cahyadi, H. S. Tan, S. G. Mhaisalkar, P. S. Lee, F. Boey, Z. K. Chen, C. M. Ng, V. R. Rao, and G. J. Qi, “Electret mechanism, hysteresis, and ambient performance of sol-gel silica gate dielectrics in pentacene field-effect transistors,” Appl. Phys. Lett., vol. 91, pp. 242107-1-3, 2007.
[89] C. A. Lee, D. W. Park, K. D. Jung, B. J. Kim, Y. C. Kim, J. D. Lee, and B. G. Park, “Hysteresis mechanism in pentacene thin-film transistors with poly(4-vinyl phenol) gate insulator,” Appl. Phys. Lett., vol. 89, pp. 262120-1-3, 2006.
[90] C. C. Chang, Z. Pei, and Y. J. Chan, “Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory,” Appl. Phys. Lett., vol. 93, pp. 143302-1, 2008.
[91] B. Mukherjee, and M. Mukherjee, “Programmable memory in organic field-effect transistor based on lead phthalocyanine,” Org. Electron., vol. 10, pp. 1282-1287, 2009.
[92] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory,” Adv. Funct. Mater., vol. 18, pp. 3678–3685, 2008.
[93] B. Philip, J. K Abraham, A. Chandrasekhar, and V. K Varadan, “Carbon nanotube/PMMA composite thin films for gas-sensing applications,” Smart Mater. Struct., vol. 12, pp. 935-939, 2003.
[94] J. Park, S. Y. Park, S. O. Shim, H. Kang, and H. H. Lee, “A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects,” Appl. Phys. Lett., vol. 85, pp. 3283-3285, 2004.
[95] J. B. Koo, S. Y. Kang, I. K. You, and K. S. Suh, “Effect of UV/ozone treatment on hysteresis of pentacene thin-film transistor with polymer gate dielectric,” Solid-State Electron., vol. 53, pp. 621-625, 2009.
[96] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett., vol. 88, pp. 162109-1-3, 2006.
[97] T. S. Huang, Y. K. Su, and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer,” Appl. Phys. Lett., vol. 91, pp. 092116-1-3, 2007.
[98] S. Y. Yang, K. Shin, and C. E. Park, “The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics,” Adv. Funct. Mater., vol. 15, pp. 1806-1814, 2005.
[99] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer,” Jour. Phys. Chem. B, vol. 109, pp. 10574-10577, 2005.
[100] K. Mohomed, T.G. Gerasimov, F. Moussy and J.P. Harmon, “A broad spectrum analysis of the dielectric properties of poly(2-hydroxyethyl methacrylate),” Polymer, vol. 46, pp. 3847-3855, 2005.
[101] S. M. Yoon, S. Yang, C. Byun, S. H. K. Park, D. H. Cho, S. W. Jung, O. S. Kwon and C. S. Hwang, “Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 ℃,” Adv. Funct. Mater., vol. 20, pp. 921–926, 2010.
[102] R. Schroeder, L. A. Majewski and M. Grell, “All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator,” Adv. Mater., vol. 16, pp. 633-636, 2004.
[103] K. Shin, S. Y. Yang, C. Yang, H. Jeon and C. E. Park, “Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors,” Org. Electron., vol. 8, pp. 336–342, 2007.
[104] X. H. Zhang, S. P. Tiwari and B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability,” Org. Electron., vol. 10, pp. 1133-1140, 2009.
[105] B. Stadlober, M. Zirkl, M. Beutl and G. Leising, “High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric,” Appl. Phys. Lett., vol.86, pp. 242902-1-3, 2005.
[106] W. H. Kim, J. H. Bae, M. H. Kim, C. M. Keum, J. Park and S. D. Lee, “Surface modification of a ferroelectric polymer insulator for low-voltage readable nonvolatile memory in an organic field-effect transistor,” J. Appl. Phys., vol. 109, pp. 024508-1-6, 2011.
[107] C. W. Tseng and Y. T. Tao, “Electric bistability in pentacene film-based transistor embedding gold nanoparticles,” J. AM. CHEM. SOC., vol. 131, pp. 12441–12450, 2009.
[108] X. Sun, C. Di and Y. Liu, “Engineering of the dielectric–semiconductor interface in organic field-effect transistors,” J. Mater. Chem., vol. 20, pp. 2599-2611, 2010.
[109] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie and Y. Ma, “H2O effect on the stability of organic thin-film field-effect transistors,” Appl. Phys. Lett., vol. 83, pp. 1644-1646, 2003.
[110] C. L. Fan, T. H. Yang, P. C. Chiu, C. H. Huang, and C. I Lin, “Organic thin-film transistor performance improvement using ammonia (NH3) plasma treatment on the gate insulator surface,” Solid-State Electron., vol. 53, pp. 246-250, 2009.
[111] C. C. Chen, M. Y. Chiu, J. T. Sheu, and K. H. Wei, “Photoresponses and memory effects in organic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots,” Appl. Phys. Lett., vol. 92, pp. 143105-1-3, 2008.
[112] A. Convertino, G. Leo, M. Tamborra, C. Sciancalepore, M. Striccoli, M.L. Curri, and A. Agostiano, “TiO2 colloidal nanocrystals functionalization of PMMA: A tailoring of optical properties and chemical adsorption,” Sens. Actuators B, vol. 126, pp. 138-143, 2007.
[113] S. Y. Ryu, B. H. Hwang, K. W. Park, H. S. Hwang, J. W. Sung, H. K. Baik, C. H. Lee, S. Y. Song and J. Y. Lee, “Highly efficient organic light-emitting diodes with a quantum dot interfacial layer,” Nanotech., vol. 20, pp. 065204-1-5, 2009.
[114] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, and Y. Eun Sung, “Synthesis of size-controlled CdSe quantum dots and characterization of CdSe–conjugated polymer blends for hybrid solar cells,” J. Photochem. Photobiol. A: Chem., vol. 179, pp. 135-141, 2006.
[115] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl. Phys., vol. 80, pp. 2501-2508, 1996.
[116] L. E. Alexander, X-Ray Diffraction Methods in Polymer Science, Wiley, New York, 1969, pp. 429.
[117] D. Gupta, M. Anand, S. W. Ryu, Y. K. Choi and S. Yoo, “Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface,” Appl. Phys. Lett., vol. 93, pp. 224106-1-3, 2008.
[118] C. G. Choi and B. S. Bae, “Effects of hydroxyl groups in gate dielectrics on the hysteresis of organic thin Film transistors,” Electrochem. Solid-State Lett., vol. 10, pp. H347-H350, 2007.
[119] D. K. Hwang, K. Lee, J. H. Kim, S. Im, Ji Hoon Park and Eugene Kim, “Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors,” Appl. Phys. Lett., vol. 89, pp. 093507-1-3, 2006.
[120] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers,” Appl. Phys. Lett., vol. 96, pp. 033302-1-3, 2010.
[121] C. W. Tseng, and Y. T. Tao, “Organic field-effect transistor/memory devices with pentacene/polydiacetylene composite film as active channel material: a morphology dependence study,” Appl. Mater. Interface, vol. 2, pp. 3231–3240, 2010.
[122] D. I. Son, J. H. Kim, D. H. Park, W. K. Choi, F. Li, J. H. Ham and T. W. Kim, “Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer,” Nanotechnol., vol. 19, pp. 055204-1-5, 2008.
[123] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya and Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett., vol. 87, pp. 193508-1-3, 2005.
[124] D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim and T. W. Kim, “Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer,” Nanotechnol., vol. 20, pp. 195203-1-6, 2009.
[125] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer and N. S. Sariciftci, “High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric,” Adv. Mater., vol. 17, pp. 2315-2320, 2005.