| 研究生: |
葉勵勇 Yeh, Li-Yung |
|---|---|
| 論文名稱: |
單頻及雙頻聲化學反應槽之最佳化設計與實驗 Optimal Design and Experimental Validation of Single- and Dual-Frequency Sonochemical Baths |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 基因演算法 、有限元素分析 、聲化學反應槽 、空蝕產量 |
| 外文關鍵詞: | Finite element method, Genetic algorithm, sonochemical bath, cavitational yield |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聲化學是經由超音波換能器將高功率超音波導入至溶液內,超音波在液體中造成正負壓不斷反覆變化,當聲壓振幅超過空蝕閥值時,使液體中之汽泡核受到壓力的擾動而膨脹及收縮而產生非穩態空蝕氣泡場,這種現象稱為非穩態空蝕。非穩態空蝕汽泡在崩裂時其內部瞬間產生極高溫及高壓的環境,隨即快速冷卻,因此提供了一個獨特的方法及環境,使化學反應能在極致的條件下進行。本研究利用COMSOL有限元素分析軟體,對壓電換能器、聲化學反應槽、水中聲場進行耦合分析,並結合基因演算法以水中平均聲壓為最大值為最佳化目標函數,針對單頻與雙頻聲化學反應槽進行最佳化設計。本研究分別對聲化學反應槽以定性實驗分析,發現本研究線性聲學模型模擬有一定之可靠性。且由定量實驗結果得知,本研究製作的聲化學反應槽其空蝕產量較文獻中已發表的實驗結果大5倍之多。
In a sonochemical reactor, high power ultrasound is introduced into liquid. Once the amplitude of the ultrasound beyond a threshold, nuclei in the liquid become unstable; volumes of the oscillating bubbles fast increase and collapse violently. This phenomenon is called unstable acoustic cavitation. Violent collapses of the cavitation bubbles result in high local pressures and temperatures accompany with extremely rapid cooling, providing a unique environment and means for driving chemical reactions under extreme conditions. In the present study the COMSOL multiphysics analysis software is employed to construct a complete model of the sonochemical bath by coupling the vibrations of piezoelectric ultrasonic transducers and vessel walls with the acoustic field of the liquid. A genetic algorithm is then employed to optimize the geometries of the bath such that a resonant acoustic field and a maximum average sound pressure can be built inside the bath. Two types of sonochemical baths are examined, namely the single-frequency bath and dual-frequency bath. Experimental results show that the distributions of cavitation bubbles qualitatively agree with the simulations. Cavitation yields generated by the single-frequency sonochemical bath is about 5 times greater than those reported in the literature.
[1] K. S. Suslick, "The chemical effects of ultrasound," Scientific American, vol. 260, pp. 80-86, 1989.
[2] W. T. Richards and A. L. Loomis, "The chemical effects of high frequency sound waves I. A preliminary survey," Journal of the American Chemical Society, vol. 49, pp. 3086-3100, 1927.
[3] P. R. Birkin, J. F. Power, A. M. Vinçotte, and T. G. Leighton, "A 1 kHz resolution frequency study of a variety of sonochemical processes," Physical Chemistry Chemical Physics, vol. 5, pp. 4170-4174, 2003.
[4] P. R. Gogate, S. Mujumdar, and A. B. Pandit, "Large‐scale sonochemical reactors for process intensification: design and experimental validation," Journal of chemical Technology and Biotechnology, vol. 78, pp. 685-693, 2003.
[5] P. R. Gogate and A. B. Pandit, "Sonochemical reactors: scale up aspects," Ultrasonics Sonochemistry, vol. 11, pp. 105-117, 2004.
[6] J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Saez, and J. Iniesta, "Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results," Ultrasonics sonochemistry, vol. 14, pp. 19-28, 2007.
[7] 謝玉宸, "超音波聲化學反應器之共振模態分析與實驗," 成功大學機械工程學系學位論文, pp. 1-122, 2008.
[8] 姚明宗, "共振式聲化學反應器之分析與實驗," 成功大學機械工程學系學位論文, pp. 1-88, 2009.
[9] 徐鈺翔, "40-kHz 浸水式聲化學反應器共振空蝕模態之分析與實驗," 成功大學機械工程學系學位論文, pp. 1-116, 2011.
[10] 陳偉哲, "圓環型超音波發射器之研製," 成功大學機械工程學系學位論文, pp. 1-84, 2014.
[11] J. Holland, "Adaption in natural and artificial systems," Ann Arbor MI: The University of Michigan Press, 1975.
[12] I. Patel, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device: INTECH Open Access Publisher, 2011.
[13] T. G. Leighton, "What is ultrasound?," Progress in biophysics and molecular biology, vol. 93, pp. 3-83, 2007.
[14] M. Turski, S. Clitheroe, A. Evans, C. Rodopoulos, D. Hughes, and P. Withers, "Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments," Applied Physics A, vol. 99, pp. 549-556, 2010.
[15] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th Edition:Wiley-VCH, 1999.
[16] B. Toukoniitty, J.-P. Mikkola, D. Y. Murzin, and T. Salmi, "Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions," Applied Catalysis A: General, vol. 279, pp. 1-22, 2005.
[17] P. R. Gogate, I. Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N. P. Vichare, and A. B. Pandit, "Cavitation reactors: Efficiency assessment using a model reaction," AIChE Journal, vol. 47, pp. 2526-2538, 2001.
[18] P. R. Gogate and A. B. Pandit, "Sonochemical reactors: scale up aspects," Ultrason Sonochem, vol. 11, pp. 105-17, May 2004.
[19] K. R. Morison and C. A. Hutchinson, "Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation," Ultrason Sonochem, vol. 16, pp. 176-83, Jan 2009.
[20] 周鵬程, 遺傳演算法原理與應用: 活用 Matlab: 全華, 2001.
[21] 卓明, 壓電力學: 全華圖書股份有限公司公司, 2003.
[22] H. L. Li, J. H. Hu, and H. L. W. Chan, "Finite element analysis on piezoelectric ring transformer," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 51, pp. 1247-1254, 2004.
[23] P. R. Gogate, S. Mujumdar, and A. B. Pandit, "Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction," Advances in Environmental Research, vol. 7, pp. 283-299, 2003.
[24] I. Tudela, V. Sáez, M. D. Esclapez, M. I. Díez-García, P. Bonete, and J. González-García, "Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: A review," Ultrasonics sonochemistry, vol. 21, pp. 909-919, 2014.
[25] V. S. Moholkar, "Mechanistic optimization of a dual frequency sonochemical reactor," Chemical Engineering Science, vol. 64, pp. 5255-5267, 2009.