| 研究生: |
林忠萱 Lin, Zhong-Xuan |
|---|---|
| 論文名稱: |
使用非對稱量子能力之中介認證式輕量化量子金鑰分配協定 Mediated authenticated lightweight quantum key distribution protocols with asymmetric quantum capabilities |
| 指導教授: |
黃宗立
Hwang, Tzone-lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 量子密碼學 、量子金鑰分配 、第三方 、半誠實 、認證式 |
| 外文關鍵詞: | Quantum cryptography, Quantum key distribution, Third party, Semi-honest, Authenticated |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文結合不同類型的使用者,在非對稱式量子環境中提出了在第三方幫助下的使用非對稱量子能力之中介認證式輕量化量子金鑰分配協定。首先,本論文提出了參與者們透過半誠實的第三方的協助分享一把金鑰,在此量子金鑰分配協定中,兩個參與者其中一位為傳統使用者,另一位為輕量化使用者。接著,藉由引入完全不誠實的第三方並透過其具備完全的量子能力以及完全不可信的特性,提出使用半誠實第三方與完全不誠實第三方之使用非對稱量子能力之中介認證式輕量化量子金鑰分配協定,進一步降低半誠實第三方的負擔。此外,在上述提出的安全協定中,參與者們進行通訊時不需要使用到假設出的理想傳統認證通道,並且參與者皆為完全不同類型的參與者。因此所提出的使用非對稱量子能力之中介認證式輕量化量子金鑰分配協定在運用上更加彈性且靈活,並能應用於不同環境。最後,在集體攻擊下,我們透過安全證明來證實所提出的協定式安全的。
This thesis proposes a mediated authenticated lightweight quantum key distribution (MALQKD) protocols with asymmetric quantum capabilities between participants without authenticated classical channel. First, this thesis proposes a protocol in which the two participants with different asymmetric quantum capabilities to share a key with the help of a semi-honest TP. In the protocol, one participant is a classical user, and the other is a lightweight user. Further, by introducing an untrusted TP, and through untrusted TP’s full quantum capability and completely untrustworthy characteristics, we propose an MALQKD with a semi-honest TP and an untrusted TP protocol to further reduce the quantum burden on the semi-honest TP. Additionally, in the prior-proposed protocols, participants do not have to assume the existence of an ideal authenticated classical channel while communicating, and are all of different types. Therefore, the proposed MALQKD protocols are more flexible and can be applied to different environments. Finally, the security analysis demonstrates that the proposed protocols are robust against collective attacks.
1. Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 1999. 41(2): p. 303-332.
2. Rivest, R.L., A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978. 21(2): p. 120-126.
3. ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions on information theory, 1985. 31(4): p. 469-472.
4. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee.
5. BENNET, C. Quantum cryptography: Public key distribution and coin tossing. in Proc. of IEEE Int. Conf. on Comp., Syst. and Signal Proc., Bangalore, India, Dec. 10-12, 1984. 1984.
6. Ekert, A.K., Quantum cryptography based on Bell’s theorem. Physical review letters, 1991. 67(6): p. 661.
7. Bennett, C.H., Quantum cryptography using any two nonorthogonal states. Physical review letters, 1992. 68(21): p. 3121.
8. Bennett, C.H., G. Brassard, and N.D. Mermin, Quantum cryptography without Bell’s theorem. Physical review letters, 1992. 68(5): p. 557.
9. Long, G.-L. and X.-S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A, 2002. 65(3): p. 032302.
10. Li, C., et al., A random quantum key distribution achieved by using Bell states. Journal of Optics B: Quantum and Semiclassical Optics, 2003. 5(2): p. 155.
11. Lo, H.-K., X. Ma, and K. Chen, Decoy state quantum key distribution. Physical review letters, 2005. 94(23): p. 230504.
12. Zhao, Y., et al., Experimental quantum key distribution with decoy states. Physical review letters, 2006. 96(7): p. 070502.
13. Shih, H.-C., K.-C. Lee, and T. Hwang, New efficient three-party quantum key distribution protocols. IEEE Journal of Selected Topics in Quantum Electronics, 2009. 15(6): p. 1602-1606.
14. Yao, X.-C., et al., Observation of eight-photon entanglement. Nature photonics, 2012. 6(4): p. 225-228.
15. Wang, X.-L., et al., Experimental ten-photon entanglement. Physical review letters, 2016. 117(21): p. 210502.
16. Julsgaard, B., et al., Experimental demonstration of quantum memory for light. Nature, 2004. 432(7016): p. 482-486.
17. Boyer, M., D. Kenigsberg, and T. Mor. Quantum key distribution with classical Bob. in 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07). 2007. IEEE.
18. Krawec, W.O., Mediated semiquantum key distribution. Physical Review A, 2015. 91(3): p. 032323.
19. Liu, Z.R. and T. Hwang, Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement. Annalen der Physik, 2018. 530(4): p. 1700206.
20. Lin, P.H., C.W. Tsai, and T. Hwang, Mediated Semi‐Quantum Key Distribution Using Single Photons. Annalen der Physik, 2019. 531(8): p. 1800347.
21. Zeng, G. and W. Zhang, Identity verification in quantum key distribution. Physical Review A, 2000. 61(2): p. 022303.
22. Hwang, T., K.-C. Lee, and C.-M. Li, Provably secure three-party authenticated quantum key distribution protocols. IEEE Transactions on Dependable and Secure Computing, 2007. 4(1): p. 71-80.
23. Yu, K.-F., et al., Authenticated semi-quantum key distribution protocol using Bell states. Quantum Information Processing, 2014. 13(6): p. 1457-1465.
24. Hwang, T., et al., Semi-quantum Inspired Lightweight Mediated Quantum Key Distribution Protocol. arXiv e-prints, 2020: p. arXiv: 2007.05804.
25. Zhang, W.-W. and K.-J. Zhang, Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum information processing, 2013. 12(5): p. 1981-1990.
26. Jefferies, N., C. Mitchell, and M. Walker. A proposed architecture for trusted third party services. in International conference on Cryptography: policy and algorithms. 1995. Springer.
27. Chen, X.-B., et al., An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Optics communications, 2010. 283(7): p. 1561-1565.
28. Huang, S.-L., T. Hwang, and P. Gope, Multi-party quantum private comparison with an almost-dishonest third party. Quantum Information Processing, 2015. 14(11): p. 4225-4235.
29. Hwang, T., T.-H. Lin, and S.-H. Kao, Quantum entanglement establishment between two strangers. Quantum Information Processing, 2016. 15(1): p. 385-403.
30. Hung, S.-M., et al., Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Information Processing, 2017. 16(2): p. 1-12.
31. Scarani, V., et al., The security of practical quantum key distribution. Reviews of modern physics, 2009. 81(3): p. 1301.
32. Preneel, B., A. Bosselaers, and H. Dobbertin, The cryptographic hash function RIPEMD-160. 1997, Citeseer.
33. Bennett, C.H., G. Brassard, and J.-M. Robert, Privacy amplification by public discussion. SIAM journal on Computing, 1988. 17(2): p. 210-229.
34. Bennett, C.H., et al., Generalized privacy amplification. IEEE Transactions on Information theory, 1995. 41(6): p. 1915-1923.
35. Lin, J. and T. Hwang, An enhancement on Shi et al.'s multiparty quantum secret sharing protocol. Optics Communications, 2011. 284(5): p. 1468-1471.
36. Gu, J. and T. Hwang, Lightweight authenticated quantum key distribution protocols with key recycling. arXiv preprint arXiv:2102.01878, 2021.
校內:2026-09-08公開