簡易檢索 / 詳目顯示

研究生: 游明莉
Yu, Ming-Li
論文名稱: 非侵入式糖尿病症診斷之丙酮氣體感測器
Acetone Gas Sensor for Non-Invasive Diabetes Diagnosis
指導教授: 周澤川
Chou, Tse-Chuan
許梅娟
Syu*, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 148
中文關鍵詞: 糖尿病酮酸中毒丙酮氣體感測器
外文關鍵詞: diabetic ketogenesis, gas sensor, acetone
相關次數: 點閱:61下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   人體的新陳代謝情況與疾病的形成,可藉由鑑定呼出氣體中之化學成分標識物得知,而不須經由抽血檢驗的程序。糖尿病患呼出之特殊氣體成分是重要現象之一,其尿液、呼出氣體與血液中所含的丙酮濃度高於一般正常值,而通常檢驗酮酸症的方法乃是以液相層析儀分析患者的血酮值,或是以試紙判斷尿酮值,然而這些方法不但具有侵入性且尿酮的檢測準確度不高。因此,本研究的目的在於發展一套非侵入式且可避免糖尿病患者發生酮酸症昏迷(DKA)的電流式丙酮氣體感測器,根據病患呼氣中丙酮濃度的不同,而可得到相對應之電流變化,藉此判斷患者血酮值的高低,提供糖尿病患者作即時的病情監控。
      
      本研究以濺鍍鉛作為工作電極、pVdF/Li+作為感測系統之電解質,施加電位-1.125V時,於室溫下對丙酮氣體有極佳的感測靈敏度,其平均應答時間約45秒,而感測極限濃度可達1ppm。在工作電極對感測結果的探討中,可發現濺鍍鉛是感測丙酮的最佳電極;而濺鍍條件中,不同基板偏壓的施加及濺鍍時間的長短皆為影響感測的因素,其中基板偏壓的施加不僅影響靈敏度,亦影響感測極限濃度。而可得到最大感測能力之濺鍍鉛工作電極,其最適製備條件為:濺鍍腔體壓力0.035torr;基板偏壓90V;功率30W;濺鍍時間10分鐘。另外,氣體流速亦會影響感測器之靈敏度,當氣體流速在200mL/min有最佳感測靈敏度。

      在高分子電解質薄膜中,影響感測的因素包括:添加劑以及添加劑的摻雜比例,在添加劑及其摻雜比例的實驗結果,以粒徑12nm,添加量為10wt%的二氧化矽為最佳選擇;而測試氣體之相對濕度大於60%時,會破壞電解質的穩定性。在感測器的選擇性測試方面,二氧化碳及氨氣對丙酮氣體的感測並不會造成干擾。而針對人體呼氣測試的結果,此感測器對於糖尿病患者與正常人的呼氣訊號可成功地作區別,且實驗結果合乎於醫學上的理論。

     Analysis of expired air enables the observation of metabolism condition and diseases development in the body as a non-invasive method. The special component expired air of diabetic mellitus is one of these phenomena. The concentration of breath acetone of the diabetic patients has been found to correlate with total plasma-ketones, blood-ketones and also correlate to β-hydroxybutyrate (β-HBA) concentration in venous blood. Because acetone is volatile, it can be measured by an acetone gas sensor resulting non-invasive and better index for diabetic diagnosis.

     Clinical diagnosis in the future, acetone sensor will be possible to substitute the complex acetone detection methods such as blood ketone measure or gas and liquid chromatographic analysis, and urinalysis via the nitroprusside method. The major purpose of this research was to select a suitable electrode material, electrolyte and a better operation condition, to test the acetone gas concentration as fast, reliable and non-invasive implement for diabetic diagnosis.

     In this research, the sensing system included sputtered lead working electrode, platinum counter electrode and pVdF/Li+ polymer electrolyte, at applied potential -1.125V, the prepared sensor has excellent sensitivity to acetone vapor, the average response time was about 45 seconds and the sensing limit could be attaining to 1ppm. The effects of working electrode materials on sensing, sputtered lead was found to be the best electrode for acetone vapor detection. The prepared conditions of the sputtered lead electrode, the different substrate bias voltages and time of deposition affected the sensing performance. The substrate bias voltages not only affected the sensitivity but also affected the sensing limit. The best preparing conditions of the sputtered lead electrode were: chamber pressure: 0.035 torr, substrate bias voltage: 90V, power: 30W and deposited 10 minutes. Another factor on sensor sensitivity was the gas flow rate; the optimal operated condition is 200mL/min.

     On the polymer electrolyte, the doping materials and the doped ratios also made the sensing results different, according to the experiment results, 10 wt% of silica particle with 12 nm diameter was chosen. On other hand, humidity of the testing gas stream affected the sensitivity significantly when the humidity was greater than 60%. Furthermore, the humidity made the polymer electrolyte unstable. The sensor selectivity was tested; the results indicated that carbon dioxide and ammonia did not affect the acetone vapor detection. For human expired test, the sensor can clearly distinguish the normal expired from the diabetic ones. The developed sensor can be an ideal candidate for diabetic ketogenesis.

    中文摘要……………………………………………………………………… Ⅰ 英文摘要……………………………………………………………………… Ⅲ 誌謝…………………………………………………………………………… Ⅴ 目錄…………………………………………………………………………… Ⅵ 表目錄………………………………………………………………………… ⅩⅠ 圖目錄………………………………………………………………………… ⅩⅡ 符號說明 ……………………………………………………………………… ⅩⅥ 第一章 序論…………………………………………………………………… 1 1-1 呼氣檢測與疾病診斷…………………………………………………… 1 1-2 疾病與人體呼氣關係…………………………………………………… 2 1-3 糖尿病酮酸中毒(Diabetic Ketogenesis-DKA)…………………… 17 1-3-1 胰島素的角色……………………………………………………… 17 1-3-2 酮體(Ketone body)……………………………………………… 18 1-3-3 酸中毒(acidosis)……………………………………………… 19 1-4 糖尿病的檢測方法……………………………………………………… 19 1-5 非侵入式血糖計的發展………………………………………………… 23 1-6 研究動機與目的………………………………………………………… 28 1-7 感測器簡介……………………………………………………………… 28 1-7-1 感測器的特性……………………………………………………… 29 1-8 丙酮感測器……………………………………………………………… 31 1-8-1 丙酮感測器的應用………………………………………………… 31 1-9 丙酮感測器文獻回顧…………………………………………………… 33 第二章 原理…………………………………………………………………… 39 2-1 薄膜沈積………………………………………………………………… 39 2-1-1 薄膜製程…………………………………………………………… 39 2-1-2 薄膜沈積機制……………………………………………………… 40 2-2 物理氣相沈積…………………………………………………………… 41 2-3 濺鍍原理………………………………………………………………… 43 2-4 儀器量測原理…………………………………………………………… 47 2-4-1 X光繞射儀…………………………………………………………… 47 2-5 丙酮氣體感測器之反應行為模式與速率決定步驟的探討…………… 49 2-5-1 酮氣體之還原反應機構…………………………………………… 49 2-5-2 感測系統之擴散行為模式………………………………………… 50 2-5-3 速率決定步驟探討………………………………………………… 54 第三章 實驗儀器與步驟……………………………………………………… 60 3-1 儀器設備………………………………………………………………… 60 3-2 藥品……………………………………………………………………… 61 3-3 電極之製備與前處裡…………………………………………………… 62 3-3-1 濺鍍鉛工作電極之製作…………………………………………… 62 3-3-2 箔工作電極之製作………………………………………………… 63 3-3-3 參考電極與輔助電極之製作……………………………………… 63 3-4 固態高分子電解質薄膜的製備………………………………………… 63 3-5 丙酮對工作電極的感測分析…………………………………………… 64 3-5-1 以循環伏安法求取電位窗………………………………………… 64 3-5-2 應答曲線與校正曲線……………………………………………… 64 3-5-3 敏感度、應答時間的測量………………………………………… 65 3-5-4 電極材料性質分析………………………………………………… 66 3-5-4-1 掃描式電子顯微鏡分析……………………………………… 66 3-5-4-2 X光繞射分析…………………………………………………… 66 第四章 結果與討論…………………………………………………………… 71 4-1 丙酮氣體的感測行為…………………………………………………… 71 4-1-1 循環伏安法求取電位窗…………………………………………… 71 4-1-2 應答曲線與濃度校正曲線………………………………………… 74 4-2 工作電極對感測行為之探討…………………………………………… 77 4-2-1 不同工作電極對丙酮氣體的感測行為…………………………… 77 4-2-2 不同濺鍍條件下鉛工作電極的感測行為………………………… 82 4-2-2-1 施加不同濺鍍基板偏壓的影響……………………………… 82 4-2-2-2 不同濺鍍時間的影響………………………………………… 82 4-3 固態高分子電解質對感測行為的探討………………………………… 88 4-3-1 固態電解質中不同添加物對感測行為的比較…………………… 88 4-3-2 固態電解質中摻雜物比例對感測行為的影響…………………… 92 4-4 其他感測特性之探討…………………………………………………… 99 4-4-1 不同氣體流速對感測行為的影響………………………………… 99 4-4-2 濕度對感測行為的影響…………………………………………… 103 4-4-3 丙酮氣體感測器之選擇性………………………………………… 103 4-4-4 電極穩定性測試…………………………………………………… 104 4-5 SEM表面分析……………………………………………………………… 112 4-5-1 鍍鉛工作電極之SEM圖……………………………………………… 112 4-5-1-1 同基板偏壓所得的濺鍍鉛電極表面………………………… 112 4-5-1-2 不同沈積時間所得的濺鍍鉛電極表面……………………… 112 4-5-1-3 不同濺鍍時間下 鉛電極之SEM圖…………………………… 113 4-5-2 高分子電解質薄膜之SEM表面分析………………………………… 113 4-5-2-1 含不同添加物之高分子薄膜SEM圖…………………………… 113 4-5-2-2 不同添加物比例之高分子電解質薄膜SEM圖……………… 117 4-6 XRD分析…………………………………………………………………… 122 4-6-1 不同基板偏壓所得的濺鍍鉛電極……………………………… 122 4-7 糖尿病患呼氣量測……………………………………………………… 125 4-7-1 糖尿病患呼氣中丙酮氣體的感測行為………………………… 125 4-8 理論與實驗之結果與討論……………………………………………… 130 4-8-1 反應控制模式…………………………………………………… 130 4-8-2 擴散控制模式…………………………………………………… 131 4-8-3 反應、擴散雙重控制模式……………………………………… 131 第五章 結論與建議…………………………………………………………… 133 5-1 結論……………………………………………………………………… 133 5-2 建議……………………………………………………………………… 134 參考文獻……………………………………………………………………… 135 附錄A…………………………………………………………………………… 142 自述…………………………………………………………………………… 148

    〔1〕 Francesco, F. D., Fuoco, R., Trivella, M. G.and Ceccarini, A., Breath
    analysis: trends in techniques and clinical applications, Microchemical
    Journal, Vol. 79, p405-410, 2005.
    〔2〕 www.vghtpe.gov.tw/~clinmed/92_07.htm - 13k.
    〔3〕 Phillips, M., Method for the Collection and Assay of Volatile Organic
    Compounds in Breath Analytical Biochemistry, Vol. 247, p272-278, 1997.
    〔4〕 Likhodii, S. S., Musa, K. and Cunnane, S. C., Clinical Chemistry, Breath
    Acetone as a Measure of Systemic Ketosis Assessed in a Rat Model of the
    Ketogenic Diet, Vol. 48, p115, 2002.
    〔5〕 Makisimovich, N., Vorotyntesv, V., Nikitina, N., Kaskevich, O., Karabun,
    P. and Martynenko, F., Adsorption semiconductor sensor for diabetic
    ketoacidosis diagnosis, Sensor& Actuators B, Vol. 419, p35, 1996.
    〔6〕 http://www.lgoods.com/ill/dm/dka.htm.
    〔7〕 Fleischer, M., Simon, E., Eva, R., Ulmer, H., Harbeck, M., Wandel, M.,
    C. Fietzek, Weimar, U. and Meixner, H. , Detection of volatile compounds
    correlated to human diseases through breath analysis with chemical
    sensors, Sensors & Actuators B, 245-249, 83, 2002.
    〔8〕 Natale, C. D., Macagnano, A., Martinelli, E., Paolesse, R., D’Arcangelo
    G., Roscioni C., Finazzi-Agro, A. and Amico, A. D., Lung cancer
    identification by the analysis of breath by means of an array of non-
    selective gas sensors, Biosensors and Bioelectronics, Vol. 18, p1209-
    1218, 2003.
    〔9〕 Lin, Y. J., Guo, H. R., Chang, Y. H., Kao, M. T., Wang, H. H. and Hong,
    R. I., Application of the electronic nose for uremia diagnosis, Sensors
    & Actuators B, Vol. 76, p177-180, 2001.
    〔10〕Natale, C. D., Macagnano, A., Martinelli, E., Paolesse, R., D’Arcangelo
    G., Roscioni, C., Finazzi-Agro, A. and Amico, A. D., Lung cancer
    identification by the analysis of breath by means of an array of non-
    selective gas sensors, Biosensors and Bioelectronics, Vol. 18, p1209-
    1218, 2003.
    〔11〕Burke, P. A., Jennifer, M., Stack, A., Wanger, D., L-[1-13C]
    Phenylalanine Oxidation as a Measure of Hepatocyte Functional Capacity
    in End-Stage Liver Disease, The American Journal of Surgery, Vol. 173, p
    270-273, 1997.
    〔12〕Romagnuolo, J., Schiller, D. and Bailey, R. J., Using breath tests
    wisely in a gastroenterology practice: an evidence based review of
    indications and pitfalls in interpretation, The American Journal of
    gastroenterology, Vol. 97, p1113-1126, 2002.
    〔13〕Deng, C., Zhang, X. and Li, N., Investigation of volatile biomarkers in
    lung cancer blood using solid-phase micro-extraction and capillary gas
    chromatography-mass spectrometry, Journal of Chromatography B, Vol. 808,
    p269–277, 2004.
    〔14〕Mendis, S., Sobotka, P. A., Leia, F. L. and Euler, D.E., Breath pentane
    and plasma lipid peroxides in ischemic heart disease, Free Radical
    Biology & Medicine, Vol.19-5, p679-684, 1995.
    〔15〕Basum, G., Dahnke, H., Halmer, D., Hering, P. and Murtz, M., Online
    recording of ethane traces in human breath via infrared laser
    spectroscopy, Journal of Applied Physiology, Vol. 95, p2583–2590, 2003.
    〔16〕Miekisch, W., Schubert, J. K., Gabriele, F. E. and Schomburg, N.,
    Diagnostic potential of breathe analysis-focus on volatile organic
    compounds, Clinical Chimica Acta, Vol. 347, p25–39, 2004.
    〔17〕Mendis, S., Sobotka, P. and Euler, D., Expired hydrocarbons in patients
    with acute myocardial infarction, Free Radical Research, Vol. 23, p117-
    122, 1995.
    〔18〕台北醫院通訊,92年9月。
    〔19〕Kato, S., Ozawa, K., Konno M. and Tajiri, H., Diagnosis accuracy of the
    13C-urea breath test for childhood Helicobacter pylori infection: a
    multicenter Japanese study, The American Journal of Gastroenterology,
    Vol. 97, p1668-1673, 2002.
    〔20〕Nobuo, O. , Masahiko, T., Shigeki, D. and Cardin, D. B., Analysis of
    volatile sulphur compounds in breath by gas chromatography-mass
    spectrometry using a three-stage cryogenic trapping pre-concentration
    system, Journal of Chromatography B, Vol. 762, p67-75, 2001.
    〔21〕陳錦順,內分泌與代謝,臺北市藝軒出版社,923頁,1992。
    〔22〕Lori, L., Ketone Bodies: A Review of Physiology, Diabetes Metabolism
    Research Review, Vol. 15, p412-426, 1999.
    〔23〕董玉京,都是血糖惹的禍:糖尿病預防與治療,臺北市中央日報出版,95頁,
    1991。
    〔24〕http://www.super18.com/medical/Display.asp?list=8&sublist=4.
    〔25〕Cho, O. K., Kin, Y. O., Mitsumaki, H. and Kuwa, K., Noninvasive
    Measurement of Glucose by Metabolic Heat Conformation Method
    Clinical Chemistry, Vol. 50:10, p1894-1898, 2004.
    〔26〕Alexeev, V. L., Das, S., Finegold, D. N. and Asher, S. A., Photonic
    Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose
    in Tear Fluid, Clinical Chemistry, Vol. 50, p2353-2360, 2004.
    〔27〕www.mendosa.com/glucowatch.htm.
    〔28〕Tierney, M. J., Tamada, J. A., Potts, R.O., Jovanovic, L. and Garg, S.,
    Clinical evaluation of the GlucoWatch biographer: a continual, non-
    invasive glucose monitor for patients with diabetes, Biosensors &
    Bioelectronics, Vol. 16, p621, 2001.
    〔29〕Gopel, W., Hesse, J., and Zemel, J. N., Sensors, VCH, New York, p2, 1991.
    〔30〕徐章,高級感測器技術的發展理念,量測資訊,35期,1,1993.
    〔31〕Janate, P. P., Principle of chemical sensor, New York, 1998.
    〔32〕Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W., Harper’s
    Biochemistry, Appleton & Lange, Vol. 24, 2001.
    〔33〕Niranjan, R. S., Sainkar, S. R., Vijayamohanan, K., and Mulla, I. S.,
    Ruthenium: in tin oxide thin film as a highly selective hydrocarbon
    sensor, Sensors & Actuators B, Vol. 82, p82-88, 2002.
    〔34〕Zhu, B. L., Xie, C. S., Wang, W. Y., Huang, K. J. and Hu, J. H.,
    Improvement in gas sensitivity of ZnO thick film to volatile organic
    compounds (VOCs) by adding TiO2, Materials Letters Vol. 58, p624-629,
    2004.
    〔35〕Carbajal-Franco, G., Tiburcio-Silver, A., Domingues, J. M. and Sanchez-
    Juarez, A., Thin film tin oxide-based propane gas sensors, Thin Solid
    Films, Vol. 373, p141-144, 2000.
    〔36〕Shepherd, R. L., Barisci, J. K., Coller, W. A., Hart, A. L., Partridge,
    A. C., and Wallace, G. G., Development of Conducting Polymer Coated
    Screen-Printed Sensors for Measurement of Volatile Compounds,
    Electroanalysis, Vol. 14, p575-582, 2002.
    〔37〕Barisci, J. N., Conn, C. and Wallace, G. G., Reviews: Conducting Polymer
    Sensors, TRIP, Vol. 4, p307-311, 1996.
    〔38〕Lin, C. W., Hwang, B. J., and Lee, C. R., Methanol sensors based on the
    conductive polymer composites from polypyrrole and poly (vinyl alcohol),
    Materials Chemistry and Physics, Vol. 55, p139-144, 1998.
    〔39〕Mensitieri, G., Venditto, V. and Guerra, G., Polymer sensing films
    absorbing organic guests into a nanoporous host crystalline phase,
    Sensors & Actuators B, Vol. 92, p255-261, 2003.
    〔40〕Huang, H., Zhou, J., Chen, S., Zeng, L., and Huang, Y., A highly
    sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis,
    Sensors & Actuators B, Vol. 101, p316-321, 2004.
    〔41〕Zhang, Q., Wang, P., Li J., and Gao, X., Diagnosis of diabetes by image
    detection of breath using gas-sensitive laps, Biosensors &
    Bioelectronics, Vol. 15, p249-256, 2000.
    〔42〕http://psroc.phys.ntu.edu.tw/bimonth/v26/512.pdf.
    〔43〕Li, D. Q., Ma, M., Surface acoustic wave microsensors based on
    cyclodextrin coatings, Sensors & Actuators B, Vol. 69, p72, 2000.
    〔44〕http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm, MEMS
    Technology.
    〔45〕140.127.111.62/8/GTL%20meeting-4.pdf, 6, 13, 2005.
    〔46〕Principle of Instrumental Analysis, 5th edition, SKOOG.
    〔47〕王佳琪,應用於糖尿病診斷之高選擇性電流式丙酮感測器及其
    研究,成功大學碩士論文,2001。

    下載圖示 校內:2006-07-15公開
    校外:2007-07-15公開
    QR CODE