| 研究生: |
藍婉禎 Lan, Wang-Chen |
|---|---|
| 論文名稱: |
轉化生長因子在形成子宮肌瘤細胞球狀體的過程中所扮演的角色 Roles of TGF-β in leiomyomal spheroid development |
| 指導教授: |
陳麗玉
Chen, Lih-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 子宮肌瘤 、轉型生長因子-β |
| 外文關鍵詞: | leiomyoma, TGF-β |
| 相關次數: | 點閱:92 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮肌瘤在生育年齡的婦女中是最常見的良性腫瘤,相關的症狀包括子宮大量不正常的出血,不孕,以及反覆性的流產等等。先前的研究指出相較於正常的子宮肌膜層,子宮肌瘤表現出較高的 TGF-β3。 TGF-β 可參與調控細胞外基質的產生以及細胞增生。先前的研究者觀察到從子宮肌瘤組織中所得到的子宮肌瘤細胞,在經過三個星期的培養後,會形成一個圓球狀的結構 (ball-like structure)。這些圓球狀的結構與人體內的子宮肌瘤十分相像,並且正常的子宮肌膜層無法形成這樣的結構。我們利用這樣的結構當作子宮肌瘤的體外研究模型,來探討TGF-β 在子宮肌瘤形成過程中所扮演的角色。子宮肌瘤組織是從在成大醫院進行子宮全切術的病患身上取得,而後子宮肌瘤細胞會自子宮肌瘤組織中取得,並培養於含有2% 胎牛血清的培養液。經過約四星期的培養後,細胞會形成不同類型的圓球狀結構,我們將其稱為spheroid。利用phase-contrast顯微鏡技術以及Hoechst staining免疫螢光染色,我們根據spheroid的外型和細胞聚集的程度將spheroid區分為1-3三種類型。結果顯示 TGF-β3會促進後期 (type 3) spheroid的形成。SB431542是一種TGF-β訊息傳遞的阻斷者,它則會抑制type 1-3 spheroid的形成。另外,我們更進一步檢測細胞的排列是否會影響到spheroid的形成。藉由肌動蛋白的免疫螢光染色,我們發現 TGF-β3 會使細胞的排列更加不規則,相對的, SB431542則會使細胞以相互平行的形式排列。由以上我們可得知TGF-β 對於spheroid的形成扮演重要的角色,但對於它如何影響細胞的排列,進而影響spheroid的生成則需要更進一步的探討。
Uterine leiomyomas are the most common benign tumors in women of reproductive age. The symptoms associated with leiomyomas include excessive uterine bleeding, infertility and repetitive pregnancy loss. Previous studies have shown that uterine leiomyomas express higher level of TGF-β3 and extracellular matrix compared with normal myometrium. TGF-βs are shown to participate in extracellular matrix production and cell proliferation. Previous investigators have observed that leiomyoma cells from tissue explants formed ball-like aggregates after 3-week culture. These ball-like aggregates resembled the nodules of leiomyoma in vivo. Myometrial cells did not form such structures. Using this model, we have investigated the roles of TGF-β in leiomyoma development. Leiomyomal tissues were obtained from the patients who underwent hysterectomy at the NCKU hospital. Cells were isolated from tissue explants and cultured in 2% FCS. After 4 weeks, different types of ball-like aggregates formed. We called them spheroids. The spheroids were classified as type 1 to type 3 according to the morphology of spheroids and the extent of cell aggregation by phase-contrast microscopy and Hoechst staining. The quantitative results showed that growth rate of spheroids varied in leiomyomal cells from different tumors. Our results showed that TGF-β3 treatment promoted the formation of advanced types of spheroids. However, SB431542, a TGF-β signalling blocker reduced the formation of type 1-3 spheroids. We further investigated whether cellular arrangement was involved in spheroid development. The immunostaining of F-actin revealed that TGF-β3 promoted disorganized arrangement of leiomyomal cells. In contrast, cells grew in parallel under SB431542 treatment. All together, our results suggest that TGF-β may play a role in spheroid development. The mechanism by which SB431452 reduces spheroid formation remains further investigation.
1. Cramer DW. Epidemiology of myomas. Semin Repro Endocrino. 1992;10:320-324
2. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol.
1990;94:435–438.
3. Buttram VC Jr, Reiter RC. Uterine leiomyomata: Etiology, symptomatology, and
anagement. Fertil Steril. 1981;36:433– 445.
4. Kawaguchi K, Fujj S, Konishi I, Nanbu Y, Nonogaki H, Mori T. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol. 1989;160:637–641.
5. Ferenczy A, Richart RM, Okagaki T. A comparative ultrastructural study of leiomyosarcoma, cellular leiomyoma, and leiomyoma of the uterus. Cancer 1971;28:1004–1018.
6. Fujita M., Hokkaido Igaku Zasshi. Histological and biochemical studies on collagen in human uterine leiomyomas. Hokkaido Igaku Zasshi.1985;60:602–615.
7. Puistola U, Ristili L, Ristili J, Kauppila A. Collagen metabolism in gynecologic patients: changes in the concentration of the aminoterminal propeptide of type 3 procollagen in serum. Am J Obstet Gynecol.1990;163: 1276–1281.
8. Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type 1 and collagen type 3 messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab.1994;79: 900–906.
9. Kevin D. Houston, Deborah S. Hunter, Leslie C. Hodges and Cheryl L. Walker. Uterine Leiomyomas: Mechanisms of Tumorigenesis. Toxicol Pathol. 2001; 29: 100-104.
10. Adamson GD. Treatment of uterine fibroids: Current findings with gonadotropin-releasing hormone agonists. Am J Obstet Gynecol. 1992;166: 746–751.
11. Andreyko JL, Marshall LA, Dumesic DA, Jaffe RB. Therapeutic uses of gonadotropin-releasing hormone analogs. Obstet Gynecol Surv. 1987;42: 1–21.
12. Murphy AA, Kettel LM, Morales AJ, et al. Regression of uterine leiomyomata in response to the antiprogesterone RU 486. J Clin Endocrinol Metab. 1993; 76; 513-517.
13. Shimomura Y, Matsuo H, Somato T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998; 83; 2192-2198.
14. Yang EY, Moses HL. Transforming growth factor-β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantonic membrane. J Cell Biol. 1990;111:731-741.
15. Hyman KM, Seghezzi G, Pintucci G, et al. Transforming growth factor-β1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein-kinase. Surgery 2002;132:173-179.
16. L etterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol. 1998;16:137-161.
17. Ignotz RA, Massague J. Transforming growth factor-B stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261: 4337–4345.
18. Piek E, Heldin CH, Ten Dijke P. Specificity, diversity,and regulation in TGF-β
superfamily signaling. FASEB J. 1999;13: 2105–2124.
19. Aisano L, Wrana JL. Signal transduction by TGF-β superfamily. Science 2002;296: 1646-1647.
20. Massague J, Woon D. Transcriptional control by the TGFβ/Smad signaling system. EMBO J. 2000;19: 1745–1754.
21. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26:3957-67.
22. Z hang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128-39
23. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577-584.
24. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF-beta 3. J Clin Endocrinol Metab. 2001;86: 913–920.
25. L ee BS, Park KH, Cho DJ, Lee K, Kim JW, Song CH, Yang WI. The Expression of TGF-beta1 and Its Effects on Collagen I and III Messenger Ribonucleic Acid Levels in Uterine Leiomyomas and Myometriums. Korean J Obstet Gynecol. 1997;40:2008-2014.
26. Arici A, Sozen I. Transforming growth factor-β3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73: 1006–1011.
27. Doina S. Joseph. et al. Myometrial cells undergo fibrotic transformation uner the influence of transforming growth -β3. Fertil Steril . 2009;93:1500-1508
28. Nicholas J. Laping. et al. Tumor-specific efficacy of transforming growth factor-βR1 inhibitoin in Eker rats. Clin Cancer Res. 2007;13:3087-3099.
29. Kobayashi Y. et al. In-vitro model of uterine leiomyomas: formation of ball-like aggregates. Hum Repro. 1996;11:1724-1730.
30. Cramer SF, Patel D. The frequency of uterine leiomyomas. Am J Clin Pathol. 990;94:435– 438.
31. Sara A. Carney, Hidetoshi Tahara, Carol D. Swartz, et al. Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: molecular and phenotypic characteristics. Lab Invest. 2002 ;82:719-728.
32. Howe SR, Gottardis MM, Everitt JI, Goldsworthy TL, Wolf DC, Walker C. Rodent model of reproductive tract leiomyomata. Establishment and c haracterization of tumor-derived cell lines. Am J Pathol. 2003;146: 1568–1579.
33. Mueller-Klieser,W., Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids. Biophys J. 1984;46:343–348.
34. Hu,G., Li,D.Q.,Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel. Biomed. Microdevices 2007;9:315–323.
35. Curcio, E., Salerno, S., Barbieri,G., De Bartolo, L. et al., Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 2007;28:5487–5497.
36. De Witt Hamer, P. C.,Van Tilborg, A. A., Eijk, P. P, Sminia, P. et al.,The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 2008;27:2091–2096.
37. Porter KB, Tsibris JC, Nicosia SV, Murphy JM, O'Brien WF, Rao PS, Spellacy WN. Estrogen-induced guinea pig model for uterine leiomyomas: do the ovaries protect? Biol Repro. 1995 Apr;52:824-832.
38. Romangnolo B, Molina T, Leroy G, Blin C, Porteux A, Thomasset M, et al. Estradiol-dependent uterine leiomyomas in transgenic mice. J Clin Inves. 1996;98:777– 784.
39. Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209:9-16.
40. Gregory M Christman 1, Huaijing Tang , John M Stribley , Steven E Domino, and Jenifer D McCarthy . Focal Adhesion Kinase Receptor Expression in Human Leiomyomas: Impact on P38 MAPK, P44/42 ERK, Mechanical Homeostasis and Tumor Behavior. Bio Repro.2008;78 : 68-68.
41. Rebecca ROGERS, BS, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol.2008;198;471.e1-11.
42. Tai CT, Lin WC, Chang WC, Chiu TH, Chen GT. Classical cadherin and catenin expression in normal myometrial tissues and uterine leiomyomas. Mol Reprod Dev. 2003;64:172-178.
43. De Wever O et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding. J Cell Sci. 2004;117:4691-4703.
44. Knudsen KA et al. A role for cadherins in cellular signaling and differentiation. J Cell Biochem uppl 1998; 30-31:168-176.
45. Ding L, Xu J, Luo X, Chegini N. Gonadotropin releasing hormone and tramsforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 2004;89:5549-5557.
校內:2013-08-30公開