| 研究生: |
李玄閔 Lee, Shiuan-Mien |
|---|---|
| 論文名稱: |
不同粒徑分佈與凝聚狀態之 a 氧化鋁粉末的成型及燒結行為 Forming and Sintering Behavior of Alpha-Alumina Powders with Different Particle Size Distribution and Agglomeration |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 粒徑分佈 、氧化鋁 、成型 、燒結 、凝聚 |
| 外文關鍵詞: | sintering, forming, agglomeration, particle size distribution, alumina |
| 相關次數: | 點閱:94 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,毫微米級氧化鋁陶瓷製程及性質受到格外的重視,但毫微米 a 氧化鋁在燒結過程之中,易造成晶粒過度的成長,進而改變其期待之性質與降低利用性。是故,有系統的瞭解 a 氧化鋁粉末的成型與燒結行為,將是毫微米級陶瓷製程上之一大課題。本實驗就是想瞭解微米與毫微米級的 a 氧化鋁粉末在成型階段的異同,並在成型後控制相同變因下,燒結緻密化的過程有什麼不同的演變,藉此更瞭解因為不同粒徑分佈與凝聚狀態所主導的 a 氧化鋁結構陶瓷製程。
本實驗採用微米與次微米之 a-Al2O3 三批粉末 (1.8 (L), 0.43 (M), 0.15 mm (S)) 為起始原料,起始粉末過 200 目篩後,以三種不同成型壓力 (10, 70, 600 MPa) 進行單軸乾壓以固定其生坯相對體密度 55%,來製成生坯。以 MTS、孔隙儀、熱膨脹儀與 SEM 進行粉末壓密分析、生坯孔隙大小及分佈分析、燒結收縮分析與微結構觀察並比較其成型特性,再經過 1000℃ 至 1700℃ 不持溫之熱處理得到氧化鋁燒結體,最後量測其相對視密度、孔隙大小及分佈,並透過微結構觀察來綜合比較其燒結行為。
研究發現在生坯成型階段上,一次粒子粒徑與分佈最大的粉末 1.8 mm (L),因為大小顆粒之間的堆疊,縱使在沒有經過造粒步驟及流動性與粒子外型均不佳的情況下,在壓實過程中也易達成緊密堆積,而其相對體密度為三批粉末中最高。在本研究中,顆粒粒徑對成型沒有影響,而是在顆粒分佈 (一次粒子或凝聚體),分佈愈廣,愈利於成型;所造粒成的軟凝聚體外型愈成球型 (流動性佳)、且其強度愈弱與分佈愈廣也愈利於成型。在燒結階段上,三批燒結體中,0.43 mm (M) 因為本身硬凝聚體的存在,所以最先開始燒結收縮 (1100℃),整體收縮呈現不均勻情形 (多指狀燒結現象),0.15 mm (S) 因為在燒結前 (1300℃) 發生粒子重排,所以會比 (M) 來得晚開始燒結收縮,一旦整體粒子與孔隙空間分配得更為均勻後,其收縮就比其他兩批來得均勻且速率最快。顆粒粒徑愈小且分佈愈集中處愈利於燒結,而粒徑差異過大的顆粒,雖然利於成型但卻不利於燒結發生;顆粒外型愈均一、分佈愈窄且無硬凝聚粒子,晶粒異常成長就愈不易發生。
It has paid much attention to the process and property of sub-micron alumina ceramics recently. But it is easy to accompany with excessive grain growth of sub-micron alpha-alumina during sintering. That will change the expectant property and reduce the application. Therefore, it will turn into the topic of sub-micron ceramics processes with realizing the forming and sintering behavior of alpha-alumina systematically. This study hopes to understand the difference of forming of nano-meter and sub-meter alpha-alumina powder, and understand the densification development when sintering after the forming then got the same factors. It can also understand the alpha-alumina structure ceramics process resulted from different particle size distribution and agglomeration.
The starting materials used in the study were 1.8, 0.43, and 0.15 mm alpha-phase, micron and sub-micron alumina powders. After the sieving with number 200 followed by the cylindrical pellets were prepared and fixed in green compact relative bulk density 55% derived from three different pressure with 10, 70, and 600 mega-pascal (MPa) when forming with automatic uniaxial hydraulic press. After the analyses of powder compaction , green body pore size distribution, sintering shrinkage, and micro-structure observation with Material Test System (MTS), porosimetry, dilatometer, and scanning electron microscope (SEM) followed by comparing the characteristics of forming. Then the green body were heated from 1000℃ to 1700℃. After the above heat treatment, the measurement of relative apparent density and pore size distribution and micro-structure evolution observation were used to compare the whole sintering behavior.
In this research of forming stage: Although there was no granulating step, low flow ability and irregular particle morphology, the 1.8 mm (L) powder with biggest primary particle size and broadest distribution was easy to get the closest packing when forming resulted from the packing of different size of particles. And the relative bulk density is most all over powders in the study. Instead of the affection of particle size in the study, the more wide particle distribution (primary particles or agglomerates), the more beneficial when forming. And the more uniform soft agglomerates’ morphology like ball shape (high flow ability), low granular strength, and wide particle distribution from granulating, the more beneficial when forming, too; At the sintering stage: The 0.43 mm (M) powder has hard agglomerates itself, so it took precedence over the others in sintering (1100℃). But during sintering, the bulk shrinkage showed a abnormal presentation (like finger grain growth). The sintering of 0.15 mm (S) powder began behind (M) but it was regular after the particle and pore rearrange in space (1300℃). So the shrinkage regularity and rate were excellent all over others. The more small particle size section and narrow particle distribution, the more beneficial when sintering. The more different particle size, the more beneficial when forming but impedimental when sintering. The more uniform particle morphology, narrow particle size distribution, and have no hard agglomerates, the less abnormal grain growth when sintering.
1. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and Sons, New York, (1995).
2. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Part 2 Data Reviews-Selection 1:High-Alumina Ceramic, National Physical Laboratory, HMSO, London, (1987).
3. L. D. Hart, Ed, Alumina Chemical: Science and Technology Handbook, Am. Ceram. Soc., Columbus, Ohio, (1990).
4. A. N. Patankar and G. Mandel, “The Packing of Solid Particles,” Trans. Indian Ceram. Soc., 39 [4], 109-117, (1980).
5. H. Y. Sohn and C. Moreland, “The Effect of Particle Size Distribution on Packing Density,” Can. J. Chem. Eng., 46, 162-167, (1968).
6. G. P. Bierwagen and T. E. Saunders, “Studies of the Effects of Particle Size Distribution on the Packing Efficiency of Particles,” Powder Tech., 10, 111-119, (1974).
7. R. M. German, Handbook of Powder metallurgy, Particle packing characteristics, Metal Powder Industries Federation, (1989).
8. 黃啟祥與林江財,氧化鋁,陶瓷技術手冊 (下) ,683-715 頁,中華民國產業科技發展協進會與中華民國粉末冶金協會,中華民國 83 年 7 月。
9. S. Taruta, K. Kitajima, N. Takusagawa, K. Okada and N. Otsuka, “Influence of Coarse Particle Size on Packing and Sintering Behavior of Bimodal Size Distributed Alumina Powder Mixtures,” J. Jp. Ceram. Soc., 101 [5], 583-588 (1992).
10. J. P. Smith and G. L. Messing, “Sintering of Bimodally Distributed Alumina Powders,” J. Am. Ceram. Soc., 67 [4], 238-242, (1984).
11. T. Kimura, Y. Matsuda, M. Oda and T. Yamaguchi, “Effects of Agglomerates on the Sintering of Alpha-Al2O3,” Ceram. International, 13, 27-34, (1987).
12. J. W. Halloran, Agglormerates and Agglomeration in Ceramic Processing, in Ultrastructure Processing of Ceramics, Glass, and Composites, Eds. L. L. Hench and D. R. Ulrich, Wiley, New York, (1984).
13. H. Rumpf and H. Schubert, Adhesion Forces in Agglomeration Processes, in Ceramic Processing before Firing, Eds. G. Y. Onoda and L. L. Hench, Wiley, New York, (1978).
14. M. N. Rahaman, Ceramic Processing and Sintering, New York (1995).
15. D. E. Niesz and R. B. Bennett, Structure and Properties of Agglomerates, in Ceramic Processing before Firing, Eds. G. Y. Onoda and L. L. Hench, Wiley, New York, (1978).
16. J. G. Li and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline a-Alumina Powder,” Acta Mater, 48, 3103-3112, (2000).
17. R. Pampuch and Haberko, “Agglomerate in Ceramic Micropowders and their Behavior on Cold Pressing and Sintering,” in Material Science Monograph, 16, Ceramic Powder, Ed. P. Vincernzini, (1983).
18. J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,” in Advances in Ceramics, 9, Forming of Ceramics, Eds. J. A. Mange and G. L. Messing, Am. Ceram. Soc., (1984).
19. F. D. Dynys and J. W. Halloran, “Influence of Aggregates on Sintering,” J. Am. Ceram. Soc., 67 [9], 596-601, (1984).
20. M. A. C. G. Van De Graff and A. J. Burggraaf, “ Wet-Chemical Behavior,” in Design of Advance in Ceramics, 12, 744-765, Science and Technology of Zirconia II, Eds. N. Claussen, M. Ruhle, and A. H. Heuer, The American Ceramic Society, Columbus, (1983).
21. F. F. Lange, A. I. Askay and B. I. Davis, “ Processing Related Fracture Orgins: Part 3. Diffractial Sintering of ZrO2 Agglomerates in Al2O3 / ZrO2 Composite,” J. Am. Ceram. Soc., 66 [6], 407-408, (1983).
22. R. T. Tremper and R. S. Gordon, “Agglomeration Effects on the Sintering of Alumina Powders Prepared by Autoclaving Aluminum Metal,” in Ceramic Processing before Firing, Eds. G. Y. Onoda and L. L. Hench, Wiley, New York, (1978).
23. W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores,” 471 in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N .A. Hooton, and G. F. Gibbon, Gordon Breach, New York, (1967).
24. R. L. Coble, “Diffusion Sintering in the Solid State,” 147-163 in Kinetics of High-Temperature Process, Ed. W. D. Kingery, MIT Press, Cambridge, MA, and John Wiley and Sons, New York, (1959).
25. F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2] 83-88, (1984).
26. T. G. M. Van De Ven and R. J. Hunter, “Energy Dissipation in Sheared Coagulated Sols,” Rheologic Acta, 16 [5], 534, (1977).
27. J. Zheng and J. S. Reed, “ Effect of Particle Packing Characteristics on Solid-State Sintering,” J. Am. Ceram. Soc., 72 [5], 810-817, (1989).
28. R. L. Coble, “ Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, (1961).
29. R. J. Brook, “Controlled Grain Growth,” 331-364 in Ceramic Fabrication Processes, Treatise on Material Science and Tech., Ed. F. F. Y. Wang, Academic Press, New York, (1976).
30. 段維新,燒結理論,粉末冶金技術手冊,204-211 頁,中華民國產業科技發展協進會與中華民國粉末冶金協會,中華民國 83 年 8 月。
31. M. F. Ashby, “A First Report on Sintering Diagrams,” Acta Metal., 22, 275-289 (1974).
32. H. P. Cahoon and C. J. Christensen, “Sintering and Grain Growth of Alpha-Alumina,” J. Am. Ceram. Soc., 39, 337-344, (1956).
33. P. L. Chen and I. W. Chen, “Sintering of fine Oxide Powders: Ⅱ, Sintering Mechanisms,” J. Am. Ceram. Soc., 80 [3], 637-645, (1997).
34. C. Legros, C. Carry, P. Bowen, and H. Hofmann, “Sintering of a Transition Alumina: Effect of Phase Transformation, Powder Characteristics and Thermal Cycle,” J. Europ. Ceram. Soc., 19, 1967-1978, (1999).
35. 張俊龍,奈米級氧化鋁粉末 q 至 a 的相轉換活化能研究,國立成功大學資源工程研究所,碩士論文,中華民國 91 年 6 月。
36. L. K. Roger, “Generation of Powder Compaction Response Diagrams,” J. Am. Ceram. Soc., 69 [10], 246-247, (1986).
37. R. A. Youshaw and J. W. Halloran, “Compaction of Spray-Dried Powders,” J. Am. Ceram. Soc., 61 [2], 227-230, (1982).