簡易檢索 / 詳目顯示

研究生: 董立瑩
Tung, Li-Ying
論文名稱: 依據三維彈性力學分析圓板的振動
Vibration of circular plates by 3-D elasticity theory
指導教授: 譚建國
Tarn, Jiann-Quo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 圓板彈性力學自由振動振動頻率平板理論
外文關鍵詞: Circular plates, Elasticity, Free vibration, Natural frequency, Theory of plates
相關次數: 點閱:161下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於三維彈性力學理論,解析橫斷面等向性圓板之自由振動。在揚棄平板理論假設前提下,由圓柱座標之彈性力學方程式建立圓板振動的位移控制方程組,再運用分離變數法推求其解,從而滿足圓板之各種邊界條件,求得其自由振動頻率。由本文數值結果可探討傳統理論應用於平板振動之適用性。

    Free vibration of transversely isotropic circular plates is analyzed on the basis of theory of elasticity without a priori plate assumptions. The governing equations for vibration of transversely isotropic circular plates are derived from the three-dimensional equations of elasticity in the cylindrical coordinates. By means of separation of variables, two sets of solutions are obtained, which enable us to satisfy various edge boundary conditions of the problems and determine the natural frequencies of the circular plates. Numerical results are evaluated and compared with those obtained according to the classical plate theory.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VII 符號表 VIII 第一章 緒論 1 1.1 本文主旨與文獻回顧 1 1.2 論文內容 3 第二章 理論架構 4 2.1 基本方程式 4 2.2 狀態空間方程式 5 2.3 邊界條件 9 (一) 固定邊(fixed edge) 9 (二) 簡支邊(simply supported edge) 9 (三) 自由邊界(free edge) 9 第三章 自由振動問題 10 3.1 第一類型特別解 11 3.1.1 第一類型特別解第一組 11 3.1.2 第一類型特別解第二組 13 3.1.3 徑向位移對中平面呈反對稱分佈之兩組解 14 3.2 第二類型特別解 16 3.3 特別解之組合 18 (一) 徑向位移對中平面呈對稱分佈 18 (二) 徑向位移對中平面呈反對稱分佈 20 3.4 邊界條件之滿足 22 3.4.1 圓板之頂底邊界條件 22 3.4.2 圓板之徑向邊界條件 25 3.5 所有解之合併 31 第四章 數值結果與討論 32 4.1 特徵矩陣方程式之簡化 32 4.2 數值方法 32 4.3 無因次化頻率因子之換算 33 4.4 無窮級數之項數收斂性 34 4.5 理論驗證 35 4.5.1 等向性圓板之理論驗證 35 4.5.2 橫斷面等向性圓板之理論驗證 40 第五章 結論與建議 42 參考文獻 44 附錄 A 徑向位移對中平面呈反對稱分佈之推導 47 附錄 B 特徵矩陣方程式之簡化 53 附錄 C 橫斷面等向性之Mindlin板理論推導 56

    1.A.W. Leissa, Vibration of plates, US Govt Printing Office, Washington, 1969.
    2.A. Lakis, Natural frequencies of transverse vibrations of non-uniform circular and annular plates, Journal of Sound and Vibration 220(2), 1999, 225-249.
    3.C. I. Park, Frequency equation for the in-plane vibration of a clamped circular plate, Journal of Sound and Vibration 313, 2008, 325-333.
    4.D. Zhou, F. T. K. Au, Y. K. Cheung, S. H. Lo, Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method, Internal Journal of Solids and Structures 40, 2003, 3089-3105.
    5.D. Zhou, Y. K. Cheung, S. H. Lo, F. T. K. Au, 3D vibration analysis of solid and hollow circular cylinders via Chebyshev-Ritz method, Computer Methods in Applied Mechanics and Enginerring 192, 2003, 1575-1589.
    6.D. D Ebenezer, K. Ravichandran, C. Padmanabhan, Forced vibrations of solid elastic cylinders, Journal of Sound and Vibration 282, 2005, 991-1007.
    7.E. Jomehzadeh, A. R. Saidi, Analytical solution for free vibration of transversely isotropic sector plates using a boundary layer function, Thin-Walled Structures 47, 2009, 82-88.
    8.H. J. Ding, R. Q. Xu, Exact solutions for free vibrations of transversely isotropic circular plates, Acta Mechanica Solida Sinica 13, 2000, 105-111.
    9.H. J. Ding, W. Chen, L. Zhang, Elasticity of transversely isotropic materials, Springer, Netherlands, 2006.
    10.J. R. Hutchinson, Vibrations of solid cylinder, Journal of Applied Mechanics 47, 1980, 901-907.
    11.J. Q. Tarn, A state space formalism for anisotropic elasticity. Part Ⅱ: cylindrical anisotropy , Internal Journal of Solids and Structure 39, 2002b, 5157-5172.
    12.J. Q. Tarn, H. H. Chang, W. D. Tseng, Axisymmetric deformation of a transversely isotropic cylindrical body: A Hamiltonian state-space approach, Journal of Elasticity 97(2), 2009, 131-154.
    13.K. M. Liew, J. B Han, Z. M. Xiao, Vibration analysis of circular Mindlin plates using the differential quadrature method, Journal of Sound and Vibration 205(5), 1997, 617-630.
    14.K. M. Liew, B. Yang, Three-dimensional elasticity solutions for free vibrations of circular plates: a polynomials-Ritz analysis, Computer Methods in Applied Mechanics and Engineering 175, 1999, 189-201.
    15.Sh. Hosseini-Hashemi et al, Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory, Journal of Sound and Vibration 329, 2010, 3382-3396.
    16.S. Srinivas, C. V. J. Rao, A. K. Rao, An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates, Journal of Sound and Vibration 12, 1970, 187-199.
    17.T. Irie, G. Yamada, K. Takagi, Natural Frequencies of Thick Annular Plates, Journal of Applied Mechanics 47,1982, 633-638.
    18.W. Kang, N. H. Lee, S. Pang, W. Y. Chung, Approximate closed form solutions for free vibration of polar orthotropic circular plates, Applied Acoustics 66, 2005, 1162-1179.
    19.X. X. Wei, K. T. Chau, Finite and transversely isotropic elastic cylinders under compression with end constrain induced by friction, Internal Journal of Solids and Structures 46, 2009, 1953-1965.
    20.徐榮橋, 圓板,環板和扇形板的自由振動和平衡問題的精確解, 浙江大學, 1999.
    21.范家讓, 強厚度疊層板殼的精確理論, 科學出版社, 北京, 1996.

    下載圖示 校內:2017-07-18公開
    校外:2019-07-18公開
    QR CODE