簡易檢索 / 詳目顯示

研究生: 卜浩軒
Pu, Hao-Hsuan
論文名稱: 紙基晶片之預濃縮現象並實際應用於蛋白質
Experimental Study of Sample Preconcentration on Paper-based Devices and Its Application to Proteins
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 54
中文關鍵詞: 紙基分析裝置預濃縮漸縮管道離子濃度極化
外文關鍵詞: Paper-based Analytical Devices, Preconcentration, Convergent Channel, Ion Concentration Polarization
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紙基微流道分析裝置正迅速地發展,提供一個低成本及操作簡單檢測或診斷機制,使人們的生活更加豐富及便利。然而,結合離子濃度極化理論於紙基晶片上的應用或分析卻很少於文獻中提及。在這篇論文中,我們用一個簡易的實驗說明了電滲流可以發生在紙張上。接著,我們第一個在有塗上Nafion的紙張上量測電流-電壓曲線,而此舉更直接驗證了離子濃度極化(ICP)現象的發生。我們也用掃描電子顯微鏡(SEM)的影像來說明Nafion確實可以填滿紙張的孔隙。此外,我們不只更進一步地在紙基晶片中用電動力學的概念驗證了樣品預濃縮的可行性,也找出一個有能力更加提升預濃縮濃度的漸縮管道。而我們也找到了在我們的裝置中之最佳漸縮管道,施加電壓50伏特130秒的情況下,最佳漸縮管道能將螢光粒(fluorescein)從初始濃度10µM濃縮20倍。樣品的需求量只要2µL,這種優勢能提供一個檢測平台給少量樣品的情況。此外,我們也提到了如何改善濃縮樣品之消散現象。樣品濃縮後的最高濃度有能力多維持10到20秒,並且可以被維持在差不多的區域。最後,為了證明這種方法的實用性,我們以結合著FITC螢光粒子的牛血清白蛋白(FITC-BSA)驗證稀薄溶液中的蛋白質也能在紙基晶片上被預濃縮,且能在施加電壓50伏特120秒的情況下,從初始濃度10µM濃縮15倍。這種方法能達到點對點照護(point-of-care)的目標,尤其是對於開發中國家或資源缺乏的地區。

    Microfluidic paper-based analytical devices (µPADs) are rapidly developed to enable low-cost and easy diagnostics for improving human life. However, there is still rare analysis and application of ion concentration polarization (ICP) in a µPAD. In this thesis, we use a facile experiment to demonstrate that the electroosmotic flow can take place on a µPAD. Moreover, we are the first to measure the current-voltage curve of a Nafion-coated µPAD, demonstrating that ICP is occurring. In addition, we also use Scanning-electron microscope (SEM) to show the Nafion can fill the pores of paper, providing ion-selective nano-junctions to the µPADs. Furthermore, we not only electrokinetically demonstrate the feasibility of the sample preconcentration method in µPADs but also design a convergent channel that has ability to enhance the focused concentration. An optimal convergent channel in our devices was also obtained and it can reach a 20-fold improvement of fluorescein concentration from the initial concentration of 10µM within 130 s under 50 V. The sample volume required is only 2µL, and thereby providing a platform for the low-volume detections. Improving the dispersion problem of the concentrated molecules is also discussed. The highest concentration of the sample plug can be retained at the same location for an additional 10 to 20 s. Finally, we also use fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) for demonstrating that proteins in diluted solution can be concentrated by a factor of 15 from the initial concentration of 10µM within 120 s under the application of 50 V on µPADs for practical applications, which can reach the goal of point-of-care (POC) benefiting human life, especially for developing countries and resource-poor settings.

    Abstract..............................................II Chapter 1 Introduction...............................1 1-1 Introduction.....................................1 1-2 Literature Survey................................3 1-3 Motivation.......................................11 Chapter 2 Principles.................................12 2-1 Electrical Double Layers (EDLs)..................12 2-2 Overlapped EDLs..................................13 2-3 Electroosmotic Flow (EOF)........................15 2-4 Electrophoresis (EP).............................16 2-5 Ion Concentration Polarization (ICP).............16 2-6 Capillary Force..................................18 Chapter 3 Materials and Methods......................19 3-1 Materials........................................19 3-2 Instruments and Software.........................19 3-3 Experiment Setup.................................20 3-4 Measurement Method...............................25 Chapter 4 Results and Discussion.....................26 4-1 EOF on a µPAD....................................26 4-2 Working Principles...............................28 4-3 SEM Images of a Nafion-coated µPAD...............29 4-4 Current-voltage Curve of a Nafion-coated µPAD....32 4-5 Sample Preconcentration on a Nafion-coated µPAD .34 4-6 Enhancing Concentration by a Convergent µPAD.....35 4-7 Improving Dispersion Problem.....................41 4-8 FITC-BSA Preconcentration on a µPAD..............43 Chapter 5 Conclusion.................................45 References............................................48

    1.George M. Whitesides., The Origins and the Future of Microfluidics., Nature, 442, 368-373, 2006.
    2.A Tefferi1 and JW Vardiman., Classification and Diagnosis of Myeloproliferative Neoplasms: The 2008 World Health Organization Criteria and Point-of-care Diagnostic Algorithms., Leukemia, 22, 14-22, 2008.
    3.Curtis D. Chin, Vincent Linder and Samuel K. Sia., Commercialization of Microfluidic Point-of-care Diagnostic Devices., Lab on a Chip, 12, 2118-2134, 2012.
    4.Paul Yager, Thayne Edwards, Elain Fu, Kristen Helton, Kjell Nelson, Milton R. Tam & Bernhard H. Weigl., Microfluidic Diagnostic Technologies for Global Public Health., Nature, 442, 412-418, 2006.
    5.Xiaole Mao and Tony Jun Huang., Microfluidic Diagnostics for the Developing World., Lab on a Chip, 12, 1412-1416, 2012.
    6.Andres W. Martinez, Scott T. Phillips, Manish J. Butte, and George M. Whitesides., Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays., Angewandte Chemie International Edition, 46, 1318-1320, 2007.
    7.Andres W. Martinez, Scott T. Phillips, and George M. Whitesides., Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices., Analytical Chemistry, 82, 3-10, 2010.
    8.Yujun Song, Yu-Yen Huang, Xuewu Liu, Xiaojing Zhang, Mauro Ferrari, and Lidong Qin., Point-of-care Technologies for Molecular Diagnostics Using a Drop of Blood., Trends in Biotechnology, 32(3), 132-139, 2014.
    9.Mohan Kumar Haleyur Giri Setty and Indira K. Hewlett., Point of Care Technologies for HIV., AIDS Research and Treatment, Article ID 497046, 2014.
    10.Kuangwen Hsieh, Adriana S. Patterson, B. Scott Ferguson, Kevin W. Plaxco, and H. Tom Soh., Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification., Angewandte Chemie International Edition, 51, 4896-4900, 2012.
    11.Ricky Y.T. Chiu, Erik Jue, Allison T. Yip, Andrew R. Berg, Stephanie J. Wang, Alexandra R. Kivnick, Phuong T. Nguyen and Daniel T. Kamei., Simultaneous Concentration and Detection of Biomarkers on Paper., Lab on a Chip, 14, 3021-3028, 2014.
    12.Mercedes C. Morales, Hao Lin and Jeffrey D. Zahn., Continuous Microfluidic DNA and Protein Trapping and Concentration by Balancing Transverse Electrokinetic Forces., Lab on a Chip, 12, 99-108, 2012.
    13.Chun-Che Lin, Jue-Liang Hsu, Gwo-Bin Lee., Sample preconcentration in microfluidic devices., Microfluid Nanofluid, 10, 481-511, 2011.
    14.Kuan-Da Huang, Ruey-Jen Yang., A Nanochannel-Based Concentrator Utilizing the Concentration Polarization Effect., Electrophoresis, 29, 4862-4870, 2008.
    15.Anup K. Singh, Daniel J. Throckmorton, Brian J. Kirby, and Aidan P. Thompson., A Novel Miniaturized Protein Preconcentrator Based On Eletric Fieldaddressable Retention And Release., Kluwer Academic Publishers, I, 347-349, 2002.
    16.Robert S. Foote, Julia Khandurina, Stephen C. Jacobson, and J. Michael Ramsey., Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes., Analytical Chemistry, 77, 57-63, 2005.
    17.Sun Min Kim, Mark A. Burns, and Ernest F. Hasselbrink., Electrokinetic Protein Preconcentration Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip., Analytical Chemistry, 78, 4779-4785, 2006.
    18.Sung Jae Kim, Yong-Ak Song, and Jongyoon Han., Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications., Chemical Society Reviews, 39(3): 912-922, 2010.
    19.Minseok Kim, Mingjie Jia and Taesung Kim., Ion Concentration Polarization in a Single and Open Microchannel Induced by a Surface-patterned Permselective Film., Analyst, 138, 1370-1378, 2013.
    20.Elain Fu, Tinny Liang, Paolo Spicar-Mihalic, Jared Houghtaling, Sujatha Ramachandran, and Paul Yager., Two-Dimensional Paper Network Format That Enables Simple Multistep Assays for Use in Low-Resource Settings in the Context of Malaria Antigen Detection., Analytical Chemistry, 84, 4574-4579, 2012.
    21.Chia-Lin Chen, Ruey-Jen Yang., Effects of Microchannel Geometry on Preconcentration Intensity in Microfluidic Chips with Straight or Convergent–Divergent Microchannels., Electrophoresis, 33, 751-757, 2012.
    22.Vincent Leung, Abdel-Aziz M. Shehata, Carlos D.M. Filipe, Robert Pelton., Streaming Potential Sensing in Paper-based Microfluidic Channels., Colloids and Surfaces A: Physicochem. Eng. Aspects, 364, 16-18, 2010.
    23.Max M. Gong, Pei Zhang, Brendan D. MacDonald, and David Sinton., Nanoporous Membranes Enable Concentration and Transport in Fully Wet Paper-Based Assays., Analytical Chemistry (Accepted Manuscript), 2014, DOI: 10.1021/ac502597v.
    24.R. Ibanez, D.F. Stamatialis, M. Wessling., Role of Membrane Surface in Concentration Polarization at Cation Exchange Membranes., Journal of Membrane Science, 239, 119-128, 2004.
    25.J.J. Krol, M. Wessling, H. Strathmann., Concentration Polarization with Monopolar Ion Exchange Membranes: Current-Voltage Curves and Water Dissociation., Journal of Membrane Science, 162, 145-154, 1999.
    26.Temsiri Songjaroen, Wijitar Dungchai, Orawon Chailapakul, Wanida Laiwattanapaisal., Novel, Simple and Low-cost Alternative Method for Fabrication of Paper-based Microfluidics by Wax Dipping., Talanta 85, 2587- 2593, 2011.
    27.Emanuel Carrilho, Andres W. Martinez, and George M. Whitesides., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics., Analytical Chemistry, 81, 7091-7095, 2009.
    28.Yao Lu, Weiwei Shi, Lei Jiang, Jianhua Qin, Bingcheng Lin., Rapid Prototyping of Paper-Based Microfluidics with Wax for Low-cost, Portable Bioassay., Electrophoresis, 30, 1-4, 2009.
    29.Z. W. Zhong, Z. P. Wang, G. X. D. Huang., Investigation of Wax and Paper Materials for the Fabrication of Paper-based Microfluidic Devices., Microsystem Technologies, 18, 649-659, 2012.
    30.Andres W. Martinez, Scott T. Phillips, Benjamin J. Wiley, Malancha Gupta and George M. Whitesides., FLASH: A Rapid Method for Prototyping Paper-based Microfluidic Devices., Lab on a Chip, 8, 2146-2150, 2008.
    31.Zhihong Nie, Christian A. Nijhuis, Jinlong Gong, Xin Chen, Alexander Kumachev, Andres W. Martinez, Max Narovlyansky and George M. Whitesides., Electrochemical Sensing in Paper-Based Microfluidic Devices., Lab on a Chip, 10, 477-483, 2010.
    32.Elain Fu, Tinny Liang, Jared Houghtaling, Sujatha Ramachandran, Stephen A. Ramsey, Barry Lutz, and Paul Yager., Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format., Analytical Chemistry, 83, 7941-7946, 2011.
    33.Zhihong Nie, Frederique Deiss, Xinyu Liu, Ozge Akbulut and George M. Whitesides., Integration of Paper-based Microfluidic Devices with Commercial Electrochemical Readers., Lab on a Chip, 10, 3163-3169, 2010.
    34.E. Jane Maxwell , Aaron D. Mazzeo , and George M. Whitesides., Paper-based Electroanalytical Devices for Accessible Diagnostic Testing., Materials Research Society, 38, 309-314, 2013.
    35.Thu H Nguyen, Arwa Fraiwan, Seokheun Choi., Paper-Based Batteries: A Review., Biosensors and Bioelectronics, 54, 640-649, 2014.
    36.Arwa Fraiwan, Sayantika Mukherjee, Steven Sundermier, Hyung-Sool Lee, Seokheun Choi., A Paper-based Microbial Fuel Cell: Instant Battery for Disposable Diagnostic Devices., Biosensors and Bioelectronics, 49, 410-414, 2013.
    37.Peter Kauffman, Elain Fu, Barry Lutz and Paul Yager., Visualization and Measurement of Flow in Two-dimensional Paper Networks., Lab on a Chip, 10, 2614-2617, 2010.
    38.Murilo Santhiago, Lauro T. Kubota., A New Approach for Paper-Based Analytical Devices with Electrochemical Detection Based on Graphite Pencil Electrodes., Sensors and Actuators B, 177, 224-230, 2013.
    39.E. Victoria Dydek and Martin Z. Bazant., Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model., AIChE Journal, 59, 3539-3555, 2013.
    40.A. Höltzel, U. Tallarek., Ionic Conductance of Nanopores in Microscale Analysis Systems: Where Microfluidics Meets Nanofluidics., Journal of Separation Science, 30, 1398-1419, 2007.
    41.Ying-Chih Wang, Anna L. Stevens, and Jongyoon Han., Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter., Analytical Chemistry, 77, 4293-4299, 2005.
    42.I. Rubinstein and B. Zaltzman., Electro-osmotically Induced Convection at a Permselective Membrane., Physical Review E, 62(2), 2238-2251, 2000.
    43.Sung Jae Kim, Ying-Chih Wang, Jeong Hoon Lee, Hongchul Jang, and Jongyoon Han., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel., Physical Review Letters, 99 (044501), 1-4, 2007.
    44.Sung Jae Kim, Sung Hee Ko, Kwan Hyoung Kang and Jongyoon Han., Direct Seawater Desalination by Ion Concentration Polarization., Nature Nanotechnology, 5, 297-301, 2010.
    45.Sung Jae Kim, Leon D. Li, and Jongyoon Han., Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel., Langmuir, 25(13), 7759-7765, 2009.
    46.Peter Atkins and Julio de Paula., Atkins’ Physical Chemistry, Eighth Edition., W. H. Freeman and Company, New York, 2006.
    47.Kazuma Mawatari, Yutaka Kazoe, Hisashi Shimizu, Yuriy Pihosh, and Takehiko Kitamori., Extended-Nanofluidics: Fundamental Technologies, Unique Liquid Properties, and Application in Chemical and Bio Analysis Methods and Devices., Analytical Chemistry, 86, 4068-4077, 2014.
    48.Kuan-Da Huang, Ruey-Jen Yang., Formation of Ionic Depletion/enrichment Zones in a Hybrid Micro-/nano-channel., Microfluid Nanofluid, 5, 631-638, 2008.

    下載圖示 校內:2016-09-03公開
    校外:2016-09-03公開
    QR CODE