簡易檢索 / 詳目顯示

研究生: 陳泓瑋
Chen, Hung-Wei
論文名稱: 旋轉步階式曲面黃光微影技術製程應用於製作無縫滾輪模仁與微透鏡陣列光學膜
Fabrication of Seamless Roller Mold and Microlens Array Optical Film Using Step-and-Rotate Curved Surface Photolithography
指導教授: 蕭飛賓
Hsiao, Fei-Bin
共同指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 步階旋轉式黃光微影技術氣環式塗佈系統電化學拋光無接縫滾輪模仁輝度霧度
外文關鍵詞: Curved surface photolithography, Step-and-rotated UV exposure, Air ring coating system, Electro-polishing, Seamless roller molds, Luminance, Haze
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文以創新的步階旋轉式黃光微影技術,製作具無接縫複雜圖形微結構之滾輪模仁,將標準黃光微影之平面微結構製程應用到曲面金屬滾輪表面上。過程中,首先研發氣環式光阻塗佈系統,成功將光阻液均勻地塗佈在直徑50~100 mm、長度150~250 mm的滾輪表面;接著建立旋轉步階紫外光曝光系統,藉由精確的對準機構與精密的旋轉控制,連續且無接縫地將光罩上之圖形轉移至金屬滾筒的外層光阻層上;此外,本文可以光罩軸向位移接續的方式,完成滾輪幅寬20 cm之大面積圖形製作。再以化學蝕刻或微電鑄的方式將圖形金屬結構轉移至滾輪表面,最後以電化學拋光來改善滾輪表面的粗糙度,完成無接縫滾輪模仁製作。本研究以製作之無縫式滾筒模仁配合PET基板的紫外光滾印,快速、連續、與大面積地製作出陣列式半球型微透鏡 (Micro-Ball-Lens Array),且高度接近半球的微透鏡陣列;經由光學實驗量測,此一光學增亮膜的輝度增益值達1.2,霧度值達85 %。本論文同時進行光學模擬,得到與實驗接近的結果,成功證明此光學膜具有均光與聚光之效益;此效益可替代傳統多片光學膜之配向,並可有效應用於平面顯示器以及TV之背光模組。

    關鍵字: 步階旋轉式黃光微影技術、氣環式塗佈系統、電化學拋光、無接縫滾輪模仁、輝度、霧度

    Abstract
    This thesis develops a novel technique of curved surface photolithography to fabricate roller mold with seamless and complicated patterns. Our approach is to modify standard photolithography from a planar type of micro-fabrication process into a curved surface one. First of all, an air ring photo-resist (PR) coating system is developed which can successfully coat a uniform photo-resist on roller surface. Secondly, a step-and-rotate UV-exposure system is constructed for transforming patterns defined by a photo-mask to the coated PR layer. Continuous and seamless patterning on the whole cylindrical surface of the roller is achieved through accurate mechanical alignment and precision rotation control of the roller as well as a parallel UV light source. Finally, using the patterned and developed PR structures as a mask, a variety of microstructures with complicated and seamless patterns can be directly fabricated on the metal roller surface by either chemical etching or electroforming process. To further improve the surface roughness, electro-polishing technique is adopted. For obtaining a brightness enhancing optical film, seamless ball-lens-array surface structures are fabricated on a roller mold. This patterned metal roller is then used in roll-to-roll (R2R) UV roller imprinting of large-area optical film with continuous micro-lens or ball-lens array surface structures. The optical performance of the roller-imprinted ball-lens-array optical film is experimentally measured and the luminance gain is 1.2 and the haze is 85 %. Optical simulation and analysis of the optical film are also carried out which show consistent results.

    Keyword: Curved surface photolithography, Step-and-rotated UV exposure, Air ring coating system, Electro-polishing, Seamless roller molds, Luminance, Haze

    目錄 摘要...................................................Ⅰ Abstract...............................................Ⅱ 致謝...................................................Ⅲ 目錄...................................................Ⅳ 圖目錄.................................................Ⅶ 表目錄...............................................XIII 第一章 緒論.............................................1 1-1 前言...............................................1 1-2 平面顯示器 (FPD) 光學膜微結構簡介.....................4 1-2-1背光模組...........................................4 1-3 文獻回顧...........................................10 1-3-1 滾輪模仁之製程....................................10 1-4 研究動機與目的......................................22 第二章 實驗原理與實驗機台架構.............................25 2-1 曲面黃光微影製作無接縫滾輪模仁原理....................25 2-2 氣環塗佈系統........................................28 2-2-1 氣環塗佈裝置構造與系統.............................28 2-2-2 塗佈頭開發設計....................................31 2-3 步階旋轉式曲面黃光微影加工系統架構.....................33 2-3-1 六吋準直平行紫外光曝光燈源..........................33 2-3-2 步階旋轉式曲面黃光微影加工系統......................35 2-3-3 準直平行曝光機功能量測.............................41 第三章 實驗製程.........................................44 3-1 前言...............................................44 3-2 滾筒模仁製作........................................45 3-2-1 滾輪模仁準備與前處理...............................45 3-2-2 光阻塗佈.........................................48 3-2-3 曲面黃光微影製程原理...............................52 3-2-4 化學濕式蝕刻與電鍍製程.............................59 3-2-5 電解拋光.........................................62 3-3 滾印製程...........................................63 3-3-1 滾印機台介紹與改裝................................63 3-3-2 實驗製程.........................................64 第四章 結果與討論.......................................66 4-1 光阻塗佈分析結果....................................66 4-2 光阻曝光劑量測定....................................70 4-3 滾筒模仁光阻曝光顯影實驗結果.........................71 4-3-1 光阻曝光顯影結果觀測與討論.........................71 4-4 滾輪模仁蝕刻與電解拋光實驗結果.......................77 4-4-1 銅滾輪模仁蝕刻結果觀測討論.........................77 4-4-2 銅滾輪模仁電解拋光結果觀測與討論....................83 4-5 鏡面滾輪模仁微電鍍製程實驗結果.......................87 4-5-1 滾輪模仁微電鍍結果觀測與討論.......................87 4-6 滾印結果與討論.....................................90 第五章 光學元件應用.....................................93 5-1 前言..............................................93 5-2 光學名詞定義.......................................94 5-3 光學膜實驗量測.....................................98 5-4 光學模擬..........................................103 5-5 結果與討論........................................106 第六章 結論與未來展望..................................108 6-1 結論.............................................108 6-2 未來展望.........................................110 參考文獻..............................................113

    參考文獻
    [1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., Vol. 67 (21), pp.3114–3116, 1995.
    [2] S. C. Tseng, W. Y. Peng, Y. F. Hsieh, P. J. Lee and W.L. Lai, “Electron beam lithography on cylindrical roller,”Microelectron Engineering, Vol. 87, pp.943–946, 2010.
    [3] http://www.sipix.com/ (sipix comp.)
    [4] M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sensors and Actuators A, Vol. 118, pp.298–306, 2005.
    [5] J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Solar Energy Materials & Solar Cells, Vol. 94, pp.629–633, 2010.
    [6] S. H. Ahn, and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting,” American Chemical Society, Vol. 3(8), pp.2304–2305, 2009.
    [7] http://www.mntech.co.kr/ (MNtech Co., Ltd.)
    [8] http://cdnet.stpi.org.tw/intro.htm (科技產業資料室)
    [9] http://www.witsview.com/ ( WitsView)
    [10] 戴玉書,台灣關鍵零組件產業發展對TFT LCD面板廠商國際競爭優勢分析,國立中山大學企業管理學系碩士論文,中華民國九十三年六月。
    [11] J. Kwak, S. Lee, Y. Oh, and H. S. Lee, “Microcup Array Fabricated by Thermal Imprint Lithography for E-Paper Application,” Molecular Crystals and Liquid Crystals, Vol. 514, pp.219[549]–227[557], 2009.
    [12] M. D. Fagan, “A novel process for continuous thermal embossing of large-area nano-patterns onto polymer films,” Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, September 2008.
    [13] H. Ten, A. Giberston, and S. Y. Chou, “Roller nanoimprint lithography,” Jounal of Vacuum Science and Technology B, Vol. 16(6), pp.3926-3928 , 1998.
    [14] N. Ishizawa, K. Idei, T. Kimura, D. Noda, and T. Hattori, “Resin micromachining by roller hot embossing,” Microsystem Technologies, Vol. 14, pp.1381–1388, 2008.
    [15] S. Y. Yang , F. S. Cheng, S. W. Xu, P. H. Huang and T. C. Huang,“Fabrication of microlens arrays using UV micro-stampingwith soft roller and gas-pressurized platform,” Microelectronic Engineering, Vol. 85, pp.603–609, 2008.
    [16] S. J. Liu and Y. C. Chang, “A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glasssubstrates,”Joural of Micromechanics and Microengineering, Vol. 17, pp.172–179, 2007.
    [17] L. T. Jiang, T. C. Huang, C. Y. Chang, J. R. Ciou, S. Y. Yang and P. H. Huang, “Direct fabrication of rigid microstructures on a metallic roller using a dry film resist,” Joural of Micromechanics and Microengineering, Vol. 18, 015004, 2008.
    [18] 陳勇嘉,滾壓式製程於中尺寸導光板之模擬與製程研究,國立中興大學精密工程研究所碩士論文,中華民國九十五年六月。
    [19] Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition, Vol. 37(5), pp.550–575, 1998.
    [20] Y. Xia, D. Qin, and G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometer-size features.”Advanced Materials, Vol. 8, pp.837-840, 1996.
    [21] A. Y. Yi and L. Li, “Design and fabrication of a micro-lens array by use of a slow tool servo,” Optics Letters, Vol. 30, pp.1707–1709, 2005.
    [22] T. Kawai, K. Ebihara, and A. Yamamoto 精密工學會誌, Vol.72,2006.
    [23] 黃玉龍,微放電加工於微米圓盤刀具之製作及應用,雲林科技大學機械工程系碩士班碩士論文。
    [24] Wenjun Wang, Xuesong Mei, Gedong Jiang, “Control of microstructure shape and morphology in femtosecond laser ablation of imprint rollers,” The International Journal of Advanced Manufacturing Technology, Vol. 41, pp.504–512, 2009.
    [25] http://www.che.ncku.edu.tw/FacultyWeb/HongCN/research/research.html (成功大學化學材料工程系)
    [26] T. Katoha, N. Nishib, M. Fukagawab, H. Uenob, S. Sugiyamab, “Direct writing for three-dimensional microfabrication using synchrotron radiation etching,” Sensors and Actuators A, Vol. 89, pp.10-15, 2001.
    [27] Shuhuai Lan, Hyejin Lee, Jun Ni, Soohun Lee, Moongu Lee, “Survey on Roller-type Nanoimprint Lithography (RNIL) Process,”International Conference on Smart Manufacturing Application, pp.371-376, 2008.
    [28] M. Matlosz and D. Landolt, “Shape Changes in Electrochemical Polishing part I : Anodic Leveling of Ni and Fe24Cr under Mass Transport Control,” Journal of Electrochemical Society, Vol. 136, pp.919, 1989.

    無法下載圖示 校內:2012-08-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE