簡易檢索 / 詳目顯示

研究生: 陳鏡羽
Chen, Jing-Yu
論文名稱: 轉錄體比較分析植物促生長內生菌Pseudomonas sp. strain 2CR1揮發物對阿拉伯芥和花椰菜的影響
Comparative Transcriptome Profiling Provides Insights into the Effect of Volatiles Emitted by plant growth-promoting endophyte Pseudomonas sp. strain 2CR1 in Arabidopsis and Cauliflower
指導教授: 黃浩仁
Huang, Hao-Jen
共同指導教授: 張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 假單胞菌 (Pseudomonas sp.)內生菌揮發性氣味共生作用缺氧反應十字花科作物
外文關鍵詞: Pseudomonas sp., endophytic bacteria, volatile compounds, symbiosis interaction, hypoxia, cruciferous crops
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 英文延伸摘要 iii 致謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 縮寫對照表 xiv 壹、前言 1 一、生物刺激劑 1 二、植物內生微生物 3 三、微生物揮發性氣味 5 四、非生物逆境 6 五、研究目的 7 貳、材料方法 9 一、植株材料與培養方法 9 1.1 阿拉伯芥培養方法 9 1.2 十字花科作物培養方法 9 二、菌種保存與培養 10 2.1 菌種保存 10 2.2 內生菌培養 10 三、植物與細菌揮發性氣味共培養 11 四、植物於細菌揮發性氣味影響下之生理生化分析 12 4.1 植物生長參數測量 12 4.2 保衛細胞ROS累積 (ROS accumulation) 12 4.3 根部胼胝體沉積 (Callose deposition) 12 4.4 耐逆境能力 12 五、植物基因表現分析 13 5.1 RNA萃取 (RNA extraction) 13 5.2 RNA濃度定量 (Quantitative Analysis of RNA) 15 5.3 瓊脂膠體電泳 (Gel Electrophoresis) 15 5.4 反轉錄作用 (Reverse Transcription, RT) 15 5.5 即時定量聚合酶連鎖反應 (Real-time Quantitative Polymerase Chain Reaction) 16 六、基因轉錄體分析 16 七、結果分析與統計 17 參、結果 18 一、內生菌揮發性氣味對阿拉伯芥與十字花科作物的生理生化影響 18 1.1 內生菌揮發性氣味對不同植株的生長之影響 18 1.2 內生菌揮發性氣味誘導阿拉伯芥保衛細胞ROS累積 19 1.3 內生菌揮發性氣味誘導阿拉伯芥根部胼胝體沉積 20 1.4 Pseudomonas sp. strain 2CR1揮發性氣味誘導花椰菜根部胼胝體沉積 20 二、內生菌揮發性氣味對阿拉伯芥與十字花科作物的逆境抗性影響 21 2.1 內生菌揮發性氣味對阿拉伯芥的逆境抗性影響 21 2.1 Pseudomonas sp. strain 2CR1揮發性氣味對花椰菜的逆境抗性影響 21 三、Pseudomonas sp. strain 2CR1揮發性氣味對阿拉伯芥基因表現影響 22 3.1 Pseudomonas sp. strain 2CR1揮發性氣味對阿拉伯芥的基因表現調控 22 3.2 Pseudomonas sp. strain 2CR1揮發性氣味誘導阿拉伯芥防禦基因表現 23 3.3 Pseudomonas sp. strain 2CR1揮發性氣味誘導阿拉伯芥營養相關的基因表現 24 四、Pseudomonas sp. strain 2CR1揮發性氣味對花椰菜基因表現影響 24 肆、討論 27 一、內生菌揮發性氣味影響阿拉伯芥及十字花科作物的生長 27 二、內生菌揮發性氣味誘導阿拉伯芥及花椰菜防禦及逆境抗性 29 三、轉錄體分析阿拉伯芥及花椰菜受Pseudomonas sp. strain 2CR1 VCs調控的基因表現 30 四、結論 34 參考文獻 36 結果圖表 46 附錄 65

    Abbaszadeh-Dahaji, P., Atajan, F. A., Omidvari, M., Tahan, V., & Kariman, K. (2021). Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Current Microbiology, 78.
    Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49.
    Alquéres, S., Meneses, C., Rouws, L., Rothballer, M., Baldani, I., Schmid, M., & Hartmann, A. (2013). The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Molecular Plant-Microbe Interactions, 26(8), 937-945.
    Andreolli, M., Lampis, S., Poli, M., Gullner, G., Biró, B., & Vallini, G. (2013). Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere, 92(6), 688-694.
    Aswani, R., Vinod, T. V., & Ashitha., J. (2020). Benefits of plant–endophyte interaction for sustainable agriculture. Microbial Endophytes: Functional Biology and Applications; Kumar, A., Radhakrishnan, E., Eds, 35-55.
    Atieno, M., Herrmann, L., Nguyen, H. T., Phan, H. T., Nguyen, N. K., Srean, P., Than, M. M., Zhiyong, R., Tittabutr, P., Shutsrirung, A., Bräu, L., & Lesueur, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management, 275, 111300.
    Bahmani, R., Kim, D., Na, J., & Hwang, S. (2019). Expression of the Tobacco Non-symbiotic Class 1 Hemoglobin Gene Hb1 Reduces Cadmium Levels by Modulating Cd Transporter Expression Through Decreasing Nitric Oxide and ROS Level in Arabidopsis. Frontiers in Plant Science, 10, 00201.
    Bakker, P. A. H. M., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C. A., & Pieterse, C. M. J. (2013). The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 4, 165.
    Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal 6, 343–351.
    Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091-1093.
    Blokhina, O. B., Chirkova, T. V., & Fagerstedt, K. V. (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany, 52(359), 1179–1190.
    Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., Eberl, L., & Weisskopf, L. (2011). Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental microbiology, 13(11), 3047-3058.
    Bolívar-Anillo, H. J., Garrido, C., & Collado, I. G. (2020). Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 19, 721–740.
    Canales, J., Arenas-M, A., Medina, J., & Vidal, E. A. (2023). A Revised View of the LSU Gene Family: New Functions in Plant Stress Responses and Phytohormone Signaling. International Journal of Molecular Sciences, 24(3), 2819.
    Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 10, 00302.
    Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4), 803-814.
    Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M., & Kim, Y. C. (2008). Open Access icon OPENOpen Access license 2R,3R-Butanediol, a Bacterial Volatile Produced by Pseudomonas chlororaphis O6, Is Involved in Induction of Systemic Tolerance to Drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8), 1067-1075.
    Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47(4), 289-297.
    Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2016). Reactive oxygen species, abiotic stress and stress combination. The plant Journal, 90(5), 856-867.
    Colla, G., & Rouphae, Y. (2020). Microalgae: New Source of Plant Biostimulants. Agronomy, 10(9), 1240.
    Compant, S. p., Duffy, B., Nowak, J., Clément, C., & Barka, E. d. A. (2005). Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.
    Cordovez, V., Schop, S., Hordijk, K., Boulois, H. D. d., Coppens, F., Hanssen, I., Raaijmakers, J. M., & Carrión, V. J. (2018). Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Applied and Environmental Microbiology, 84(22), e01865-01818.
    Debouba, M., Dguimi, H. M., Ghorbel, M., Gouia, H., & Suzuki, A. (2013). Expression pattern of genes encoding nitrate and ammonium assimilating enzymes in Arabidopsis thaliana exposed to short term NaCl stress. Journal of Plant Physiology, 170(2), 155-160.
    Drigo, B., Pijl, A. S., Duyts, H., & Kowalchuk, G. A. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 107(24), 10938-10942.
    Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L., Huang, Z., Wang, B., Jiang, H., Huang, T., Li, C.-B., Wei, J., Kang, L., Li, J., & Li, C. (2014). Closely Related NAC Transcription Factors of Tomato Differentially Regulate Stomatal Closure and Reopening during Pathogen Attack. The Plant Cell, 26(7), 3167-3184.
    Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects. Biological Control, 103, 62-68.
    Fan, D., Subramanian, S., & Smith, D. L. (2020). Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Scientific reports, 10, 12740.
    Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae, 8(3), 189.
    Gasch, P., Fundinger, M., Müller, J. T., Lee, T., Bailey-Serres, J., & Mustroph, A. (2016). Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. The Plant Cell, 28(1), 160-180.
    Gravot, A., Richard, G., Lime, T., Lemarié, S., Jubault, M., Lariagon, C., Lemoine, J., Vicente, J., Robert-Seilaniantz, A., Holdsworth, M. J., & Manzanares-Dauleux, M. J. (2016). Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC Plant Biology, 16, 251.
    Habiba, U., Ali, S., Farid, M., Shakoor, M. B., Rizwan, M., Ibrahim, M., Abbasi, G. H., Hayat, T., & Ali, B. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environmental Science and Pollution Research, 22, 1534–1544.
    Hanifah, N. A. S. b., Ghadamgahi, F., Ghosh, S., Ortiz, R., Whisson, S. C., Vetukuri, R. R., & Kalyandurg, P. B. (2023). Comparative transcriptome profiling provides insights into the growth promotion activity of Pseudomonas fluorescens strain SLU99 in tomato and potato plants. Frontiers in Plant Science, 14, 1141692.
    Hess, N., Klode, M., Anders, M., & Sauter, M. (2011). The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiologia Plantarum, 143(1), 41-49.
    Hong, C.-P., Wang, M.-C., & Yang, C.-Y. (2020). NADPH Oxidase RbohD and Ethylene Signaling are Involved in Modulating Seedling Growth and Survival Under Submergence Stress. Plants, 9(4), 471.
    Hong, C. E., & Park, J. M. (2016). Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnology Reports, 10, 353–357.
    Jahn, L., Storm-Johannsen, L., Seidler, D., Noack, J., Gao, W., Schafhauser, T., Wohlleben, W., Berkel, W. J. H. v., Jacques, P., Kar, T., Piechulla, B., & Ludwig-Müller, J. (2022). The Endophytic Fungus Cyanodermella asteris Influences Growth of the Nonnatural Host Plant Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 35(1), 49-63.
    Kan, J. A. L. v., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957-961.
    Kapadia, C., Patel, N., Rana, A., Vaidya, H., Alfarraj, S., Ansari, M. J., Gafur, A., Poczai, P., & Sayyed, R. Z. (2022). Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. Frontiers in Plant Science, 13.
    Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water‑Defcit Stress. Journal of Plant Growth Regulation, 40, 162–178.
    Karnwal, A., Shrivastava, S., Al-Tawaha, A. R. M. S., Kumar, G., Kumar, A., & Kumar, A. (2023). PGPR-Mediated Breakthroughs in Plant Stress Tolerance for Sustainable Farming. Journal of Plant Growth Regulation, 1-17.
    Kechid, M., Desbrosses, G., Rokhsi, W., Varoquaux, F., Djekoun, A., & Touraine, B. (2013). The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytologist, 198(2), 514-524.
    Khumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., Enshasy, H. A. E., Sayyed, R. Z., & Najafi, S. (2022). Halotolerant Plant Growth-Promoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Frontiers in Microbiology, 13, 905210.
    Kim, K.-s., Lee, S., & Ryu, C.-M. (2013). Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nature communications, 4, 1809.
    Kong, H. G., Song, G. C., Sim, H.-J., & Ryu, C.-M. (2021). Achieving similar root microbiota composition in neighbouring plants through airborne signalling. The ISME Journal, 15, 397–408.
    Kumar, A., Tripti, Voropaeva, O., Maleva, M., Panikovskaya, K., Borisova, G., Rajkumar, M., & Bruno, L. B. (2021). Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere, 266, 128983.
    Kumari, S., Bharat, N. K., & Thakur, A. K. (2020). Role of Plant Growth-Promoting Rhizobacteria (PGPR) and Bio-Control Agents (BCAs) in Crop Production. International Journal of Economic Plants, 7(3), 144-150.
    López, S. M. Y., Pastorino, G. N., & Balatti, P. A. (2021). Volatile organic compounds profile synthesized and released by endophytes of tomato (Solanum lycopersici L.) and their antagonistic role. Archives of Microbiology, 203, 1383–1397.
    Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding, Y., Scheel, D., Herklotz, S., Hilbert, M., & Zuccaro, A. (2015). Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytologist, 207(3), 841-857.
    Lephatsi, M. M., Meyer, V., Piater, L. A., Dubery, I. A., & Tugizimana, F. (2021). Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites, 11(7), 457.
    Li, Z., Wen, W., Qin, M., He, Y., Xu, D., & Li, L. (2022). Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Frontiers in Microbiology, 13, 928967.
    Liu, B., Ouyang, Z., Zhang, Y., Li, X., Hong, Y., Huang, L., Liu, S., Zhang, H., Li, D., & Song, F. (2014). Tomato NAC Transcription Factor SlSRN1 Positively Regulates Defense Response against Biotic Stress but Negatively Regulates Abiotic Stress Response. PLoS One, 9(7), e102067.
    Liu, N., Xu, Y., Li, Q., Cao, Y., Yang, D., Liu, S., Wang, X., Mi, Y., Liu, Y., Ding, C., Liu, Y., Li, Y., Yuan, Y.-W., Gao, G., Chen, J., Qian, W., & Zhang, X. (2022). A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host & Microbe, 30(8), 1124–1138.
    Liu, Z., Hartman, S., Veen, H. v., Zhang, H., Leeggangers, H. A. C. F., Martopawiro, S., Bosman, F., Deugd, F. d., Su, P., Hummel, M., Rankenberg, T., Hassall, K. L., Bailey-Serres, J., Theodoulou, F. L., Voesenek, L. A. C. J., & Sasidharan, R. (2022). Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiology, 190(2), 1365-1383.
    Lokdarshi, A., Conner, W. C., McClintock, C., Li, T., & Roberts, D. M. (2016). Arabidopsis CML38, a Calcium Sensor That Localizes to Ribonucleoprotein Complexes under Hypoxia Stress. Plant Physiology, 170(2), 1046–1059.
    Macho, A. P., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54(2), 263-272.
    Martin, T., Oswald, O., & Graham, I. A. (2002). Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon:Nitrogen Availability. Plant Physiology, 128(2), 472-481.
    Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D., & Ausubel, F. M. (2010). Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns. The Plant Cell, 22(3), 973-990.
    Mittler, R., Zandalinas, S. I., Fichman, Y., & Breusegem, F. V. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23(10), 663-679.
    Morcillo, R. J., Singh, S. K., He, D., An, G., Vílchez, J. I., Tang, K., Yuan, F., Sun, Y., Shao, C., Zhang, S., Yang, Y., Liu, X., Dang, Y., Wang, W., Gao, J., Huang, W., Lei, M., Song, C.-P., Zhu, J.-K., . . . Zhang, H. (2020). Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner. The EMBO Journal, 39, e102602.
    N, M., Manjunatha, N., Li, H., Sivasithamparam, K., Jones, M. G. K., Edwards, I., Wylie, S. J., & Agarrwal, R. (2022). Fungal endophytes from salt-adapted plants confer salt tolerance and promote growth in wheat ( Triticum aestivum L.) at early seedling stage. Microbiology, 168(8). https://doi.org/10.1099/mic.0.001225
    Narayan, O. P., Kumar, P., Yadav, B., Dua, M., & Johri, A. K. (2022). Sulfur nutrition and its role in plant growth and development. Plant Signaling and Behavior, 2030082.
    Nawrocka, J., Gromek, A., & Małolepsza, U. (2019). Nitric Oxide as a Beneficial Signaling Molecule in Trichoderma atroviride TRS25-Induced Systemic Defense Responses of Cucumber Plants Against Rhizoctonia solani. Frontiers in Plant Science, 10, 421.
    Newman, M.-A., Sundelin, T., Nielsen, J. T., & Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4, 139.
    Nilson, S. E., & Assmann, S. M. (2007). The control of transpiration. Insights from Arabidopsis. Plant Physiology, 143(1), 19–27.
    Nongbri, P. L., Johnson, J. M., Sherameti, I., Glawischnig, E., Halkier, B. A., & Oelmüller, R. (2012). Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Molecular Plant-Microbe Interactions, 25(9), 1186-1197.
    Okamoto, M., Kushiro, T., Jikumaru, Y., Abrams, S. R., Kamiya, Y., Seki, M., & Nambara, E. (2011). ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry, 72(8), 711-722.
    Pérez-Alonso, M.-M., Guerrero-Galán, C., Ortega-Villaizán, A. G., Ortiz-García, P., Scholz, S. S., Ramos, P., Sakakibara, H., Kiba, T., Ludwig-Müller, J., Krapp, A., Oelmüller, R., Vicente-Carbajosa, J., & Pollmann, S. (2022). The calcium sensor CBL7 is required for Serendipita indica-induced growth stimulation in Arabidopsis thaliana, controlling defense against the endophyte and K+ homoeostasis in the symbiosis. Plant, Cell and Environment, 45(11), 3367-3382.
    Pescador, L., Fernandez, I., Pozo, M. J., Romero-Puertas, M. C., Pieterse, C. M. J., & Martínez-Medina, A. (2022). Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. Journal of Experimental Botany, 73(2), 584–595.
    Petropoulos, S. A. (2020). Practical Applications of Plant Biostimulants in Greenhouse Vegetable Crop Production. Agronomy, 10(10), 1569.
    Phetcharat, P., & Duangpaeng, A. (2012). Screening of Endophytic Bacteria from Organic Rice Tissue for Indole Acetic Acid Production. Procedia Engineering, 32, 177-183.
    Piršelová, B., & Matušíková, I. (2013). Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiologiae Plantarum, 35, 635–644.
    Postiglione, A. E., & Muday, G. K. (2020). The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Frontiers in Plant Science, 11, 00968.
    Qu, Y., Wang, Y.-y., Yin, Q.-s., Huang, L.-l., Jiang, Y.-g., Li, G.-z., & Hao, L. (2018). Multiple biological processes involved in the regulation of salicylic acid in Arabidopsis response to NO2 exposure. Environmental and Experimental Botany, 149, 9-16.
    Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science 10, 287.
    Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W., & Paré, P. W. (2004). Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3, 1101–1108.
    Schulz-Bohm, K., Martín-Sánchez, L., & Garbeva, P. (2017). Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Frontiers in Microbiology, 8, 2484.
    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R., & Slatyer, R. A. (2017). Evolution of Ecological Niche Breadth. Annual Review of Ecology, Evolution, and Systematics, 48, 183-206.
    Song, G. C., Jeon, J.-S., Sim, H.-J., Lee, S., Jung, J., Kim, S.-G., Moon, S. Y., & Ryu, C.-M. (2021). Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of Experimental Botany, 73(2), 571–583.
    STRAND, A. E., PRITCHARD, S. G., MCCORMACK, M. L., DAVIS, M. A., & OREN, R. (2008). Irreconcilable differences: fine-root life spans and soil carbon persistence. Science, 319(5862), 456-458.
    Sun, L., Cao, M., Liu, F., Wang, Y., Wan, J., Wang, R., Zhou, H., Wang, W., & Xu, J. (2020). The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil volume, 456, 207–221.
    Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z., & Lisjak, M. (2021). Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178(2), 169-191.
    Vergara, R., Parada, F., Rubio, S., & Pérez, F. J. (2012). Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene. Journal of Experimental Botany, 63(11), 4123–4131.
    Vespermann, A., Kai, M., & Piechulla, B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Applied and Environmental Microbiology, 73(17), 5639-5641.
    Wang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021). Regulation and Function of Defense-Related Callose Deposition in Plants. International Journal of Molecular Sciences, 22(5), 2393.
    Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y., & Mayama, h. (2005). Microarray Analysis of the Gene Expression Profile Induced by the Endophytic Plant Growth-Promoting Rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant-Microbe Interactions, 18(5), 385–396.
    Weisskopf, L., Schulz, S., & Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature reviews microbiology, 19, 391–404.
    Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., Jenkins, D. J., Penfold, C. A., Baxter, L., Breeze, E., Kiddle, S. J., Rhodes, J., Atwell, S., Kliebenstein, D. J., Kim, Y.-s., Stegle, O., Borgwardt, K., Zhang, C., Tabrett, A., . . . Denby, K. J. (2012). Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis. The Plant Cell, 24(9), 3530-3557.
    Winkelmüller, T. M., Entila, F., Anver, S., Piasecka, A., Song, B., Dahms, E., Sakakibara, H., Gan, X., Kułak, K., Sawikowska, A., Krajewski, P., Tsiantis, M., Garrido-Oter, R., Fukushima, K., Schulze-Lefert, P., Laurent, S., Bednarek, P., & Tsuda, K. (2021). Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. The Plant Cell, 33(6), 1863–1887.
    Wu, S.-W., Kumar, R., Iswanto, A. B. B., & Kim, J.-Y. (2018). Callose balancing at plasmodesmata. Journal of Experimental Botany, 69(22), 5325–5339.
    Xing, M., Lv, H., Ma, J., Xu, D., Li, H., Yang, L., Kang, J., Wang, X., & Fang, Z. (2016). Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS One, 12(2), e0148048.
    Xu, L., Wu, C., Oelmüller, R., & Zhang, W. (2018). Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Frontiers in Microbiology, 9, 1646.
    Yang, C.-Y. (2014). Hydrogen peroxide controls transcriptional responses of ERF73/HRE1 and ADH1 via modulation of ethylene signaling during hypoxic stress. Planta, 239, 877–885.
    Yang, C.-Y., Huang, Y.-C., & Ou, S.-L. (2017). ERF73/HRE1 is involved in H2O2 production via hypoxia-inducible Rboh gene expression in hypoxia signaling. Protoplasma, 254(4), 1705-1714.
    Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., & Pieterse, C. M. J. (2013). Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria. Plant Physiology(1), 304-318.
    Zhang, G.-B., Yi, H.-Y., & Gong, J.-M. (2014). The Arabidopsis Ethylene/Jasmonic Acid-NRT Signaling Module Coordinates Nitrate Reallocation and the Trade-Off between Growth and Environmental Adaptation. Plant Cell, 26(10), 3984-3998.
    Zhang, M., Liu, L., Chen, C., Zhao, Y., Pang, C., & Chen, M. (2022). Heterologous expression of a Fraxinus velutina SnRK2 gene in Arabidopsis increases salt tolerance by modifying root development and ion homeostasis. Plant Cell Reports, 41, 1895–1906.
    Zhang, W., He, S. Y., & Assmann, S. M. (2008). The plant innate immunity response in stomatal guard cells invokes G‐protein‐dependent ion channel regulation. The plant Journal, 56(6), 984-996.
    Zhao, B., Liu, Q., Wang, B., & Yuan, F. (2021). Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. Journal of Agricultural and Food Chemistry, 69, 3566−3584.
    Zhao, H., Wu, L., Chai, T., Zhang, Y., Tan, J., & Ma, S. (2012). The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Journal of Plant Physiology, 169(13), 1243-1252.
    Zhao, M., Haxim, Y., Liang, Y., Qiao, S., Gao, B., Zhang, D., & Li, X. (2022). Genome-wide investigation of AP2/ERF gene family in the desert legume Eremosparton songoricum: Identification, classification, evolution, and expression profiling under drought stress. Frontiers in Plant Science, 13, 885694.

    無法下載圖示 校內:2028-08-05公開
    校外:2028-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE