簡易檢索 / 詳目顯示

研究生: 謝一豪
Hsieh, Yi-Hao
論文名稱: 在Tri-Dexel基準下使用Marching Cube來平滑化三維表面與銳利化邊緣特徵及工件輪廓量測
Tri-Dexel-Based 3D Surface Smoothing and Feature Sharpness Enhancement Using Marching Cube and Workpiece Profile Measurement
指導教授: 連震杰
Lien, Jenn-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 56
中文關鍵詞: 逆向工程切削模擬自動光學檢測Tri-dexelMarching Cube
外文關鍵詞: Reverse Engineering, Milling Simulation, AOI, Tri-dexel, Marching Cube
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套逆向工程系統,並研究實作其中的三個子系統:一、從點雲到CAD轉換子系統,二、切削模擬子系統,三、工件二維輪廓量測與誤差計算子系統。首先使用三維重建系統建立岀待測物的點雲,在第一個子系統中,將點雲轉換為tri-dexel架構模型,並使用基於Marching Cube衍生岀的演算法,來建構並校正模型的表面平滑度及邊角銳利度。接著,將CAD進行切銷路徑的計算,產生CAM與NC加工路徑後帶入第二個子系統。第二個子系統中基於tri-dexel架構模型,數位化模擬CAD/CAM系統中產生的NC加工路徑,用以在加工前檢測加工路徑的正確性,並回饋錯誤資訊以進行路徑校正優化。優化後的切削路徑輸入機台並切削加工後,將工件成品帶入第三個子系統。第三個子系統中,使用自動光學檢測的方式,將工件取像後使用影像處理演算法偵側輪廓,並計算誤差,用以校正機台或切削路徑使用。最後,在檢測誤差小於制定的閥值後,即可得到逆向工程推算岀的工件。

    The thesis establishes a reverse engineering system and researches three subsystem: (1) Converting point cloud to CAD. (2) Milling simulation. (3) Workpiece profile measurement. In first subsystem, converting point cloud reconstructed by DLP to tri-dexel model and using some Marching Cube algorithms to construct and correct the model with smooth surface and sharp feature. Then estimating the tool path CAM and NC code of CAD and bringing them to the second subsystem. In second subsystem, using tri-dexel model and Boolean operation to perform the NC code on the computer and judging the tool path in NC code is correct or not. The third subsystem using AOI to take pictures of workpiece and detecting the profile using image processing. After getting the profile information, estimating the error between profile and CAD to compensate the tool path. If the error is less than threshold, the reverse engineering is finish and get the workpiece.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures VI List of Tables IX Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Related Works 3 1.3 System Structure 4 1.4 Organization of Thesis 9 Chapter 2. Conversion from 3D Point Cloud to Tri-Dexel Volumetric Model 10 2.1 Conversion from 3D Point Cloud to Mesh Data Using Delaunay Triangulation 11 2.1.1 3D Point Cloud Reconstruction Using DLP 11 2.1.2 Mesh Data Construction Using Delaunay Triangulation 13 2.2 Conversion from 3D Mesh Data to Volumetric Data Using Tri-Dexel Model 15 2.2.1 Volumetric Model Conversion Using Tri-Dexel Model 16 2.2.2 Surface Processing Using Marching Cube 19 Chapter 3. Tri-Dexel-Based 3D Surface Smoothing and Feature Sharpness Enhancement Using Marching Cube 26 3.1 Tri-Dexel-Based 3D Surface Smoothing Using Dual Marching Cube 27 3.2 Tri-Dexel-Based Feature Sharpness Enhancement Using Extended Marching Cube 32 3.3 Tri-Dexel-Based Milling Simulation Using Boolean Operation 40 Chapter 4. 2D Profile Measurement and Error Estimation of Workpiece for Compensation 43 4.1 2D Profile Extraction of Workpiece 43 4.2 Error Estimation between 2D CAD and Profile Image 50 Chapter 5. Experimental Results and Application 53 5.1 3D Reconstruction 53 5.2 2D Profile Measurement and Error Estimation of Workpiece 57 Chapter 6. Conclusion and Future Works 61 Reference 63

    [1] D. Breen, S. Mauch and R. Whitaker, “3D Scan Conversion of CSG Models into Distance Volumes,” IEEE Symposium on Volume Visualization, pp. 7-14, 1998.
    [2] G. Bradsky and A. Kaehler, “Learning OpenCV: Computer Vision with the OpenCV Library.” O’Reilly, Sebastopol, CA.
    [3] X. Gao, S. Zhang and Z. Hou, “Three Direction DEXEL Model of Polyhedrons and its Application." Third International Conference on Natural Computation, 2007, pp.145-149
    [4] S. Gibson, “Using Distance Maps for Accurate Surface Representation in Sampled Volumes,” IEEE Symposium on Volume Visualization, pp. 23-30, 1998.
    [5] J. Huang, R. Yagel, V. Filippov and Y. Kurzion, “An Accurate Method for Voxelizing Polygon Meshes,” ACM 1998 Symposium on Volume Visualization, pp.119-126, 1998.
    [6] L.P. Kobbelt, M. Botsch, U. Schwanecke and H.P. Seidel, “Feature Sensitive Surface Extraction from Volume Data.” In Proceedings of SIGGRAPH 2001, pp. 57-66, 2001.
    [7] D. Lanman and G. Taubin, “Build your own 3d scanner: 3d Photograhy for Beginners.” In SIGGRAPH courses, pp. 1-87. ACM, 2009.
    [8] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Proceedings of SIGGRAPH 1987, pp. 163-169, 1987.
    [9] T. S. Newman and H. Yi. “A Survey of The Marching Cubes Algorithm.” Computers And Graphics, pp. 854-879, 2006.
    [10] G.M. Nielson, “Dual Marching Cubes,” Proc. IEEE Visualization Conf., pp. 489-496, 2004.
    [11] G. M. Nielsen and B. Hamann, "The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes", Proc. IEEE Visualization 91, pp. 83-91, 1991
    [12] X. Peng and W. Zhang, “A Virtual Sculpting System Based on Triple Dexel Models with Haptics,” Computer –Aided Design and Applications, 6(5), pp.645-659, 2009.
    [13] Y. Ren, W. Zhu and Y.S. Lee. “Feature Conservation and Conversion of Tri-Dexel Volumetric Models to Polyhedral Surface Models for Product Prototyping.” Comput Aided Des Appl 2008.
    [14] Y. Ren, S.K. Lai-Yuen and Y.S. Lee, “Virtual Prototyping and Manufacturing Planning by Using Tri-Dexel Models and Haptic Force Feedback,” Virtual and Physical Prototyping, 1(1), pp.3-18, 2006.
    [15] R. Szeliski, “Computer Vision: Algorithms and Applications.” Springer, 2011.
    [16] G. Turk, J. O’Brien, “Shape Transformation Using Variational Implicit Functions,” Computer Graphics (SIGGRAPH 99 Proceedings), pp.335-342, 1999.
    [17] T. Van Hook, “Real-Time Shaded NC Milling Display,” Computer Graphics (Proc. SIGGRAPH '86), pp. 15-20, 1986.
    [18] W. S. Wang and A. E. Kaufman, “Volume Sculpting, ACM Symposium On Interactive 3D Graphics,” Monterey CA USA, pp. 151-156, 1995.
    [19] M. Woo, J. Neider, T. Davis, and D. Shreiner, “OpenGL Programming Guide: The Official Guide to Learning OpenGL,” Addison-Wesley, 1999.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE