| 研究生: |
梁仁溢 Liang, Jen-I |
|---|---|
| 論文名稱: |
建構動物模型之步態分析系統 Establishing a Locomotion Analysis System for Preclinical Animal Models |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 阿基里斯腱修復 、功能指數 、步態分析 、踝關節角度 、影像分析 、動物模型 |
| 外文關鍵詞: | Achilles tendon repair, functional index, gait analysis, ankle motion, image analysis, animal model |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,以影像為基礎的大鼠步態分析系統逐漸被建立起來,不僅可分析大鼠步態的空間相關參數(如步長、步寬等)亦可分析其時間相關參數(如站立期、擺盪期等)。然而,目前並無相關研究評估阿基里斯腱復原後大鼠之步態功能回復情形。以臨床的觀點來看,功能表現的恢復應該是比(解剖)結構上的恢復還要來得重要,但現今大多數相關動物實驗所用的評估方法大多是以評估結構恢復的狀況為主,與臨床上的需求無法有效的連結在一起。因此,本研究主要包括兩個目的。目的1:建立以影像為基礎的大鼠步態分析系統,並以此系統來評估阿基里斯腱復原之大鼠,進而比較傳統的阿基里斯腱功能指數與步態分析參數之量測敏感性;目的2:使用影像為基礎的步態分析系統來評估二個大鼠阿基里斯腱修復模型,此二模型分別為糖尿病大鼠與組織工程治療大鼠。
於目的1中,實驗動物隨機分為正常、假手術、阿基里斯腱修復及阿基里斯腱缺損四組。於目的2中,糖尿病大鼠分為阿基里斯腱修復與阿基里斯腱缺損兩組,組織工程治療大鼠分為透明質酸、透明質酸+細胞及生理食鹽水局部注射三組。所有動物都將使用以影像為基礎的大鼠步態分析系統來進行阿基里斯腱功能指數與步態參數之評估。
本研究所建立之影像為基礎的大鼠步態分析系統展現出十分優秀的系統信度與效度。在空間相關參數的分析中,假手術大鼠與阿基里斯腱受傷大鼠之步長改變呈現相類似的趨勢。而在時間相關參數的分析中,假手術大鼠與阿基里斯腱受傷大鼠之步長改變展現出截然不同的後腳不對稱趨勢。在踝關節角度的分析中,患側於站立中期和擺盪前期之關節角度與阿基里斯腱功能指數有顯著的高度相關性。研究結果亦指出踝關節角度分析比阿基里斯腱功能指數有較高的量測敏感性,尤其是在患側擺盪前期的關節角度與後腳關節活動度之不對稱趨勢。
在糖尿病大鼠的模型中,由於高血糖而導致癒合能力變差的關係,阿基里斯腱斷裂後的高血糖大鼠步行能力表現普遍比正常血糖的大鼠還要來得差,尤其是當斷裂後的阿基里斯腱並未進行修復的高血糖大鼠其步行功能表現得最差。因此可推論肌腱修復對於阿基里斯腱斷裂的高血糖大鼠來說比正常血糖老鼠還要來得重要許多。
在以組織工程方法來治療阿基里斯腱修復後的大鼠,當以透明質酸混合肌腱細胞 (Tenocyte)注射至修復肌腱的周圍後,其功能癒合初期的恢復狀態比其他治療方式的組別還要來得好。本研究之結果顯示,利用細胞治療的方式可以幫助阿基里斯腱修復後的大鼠在步行能力有顯著的比其他治療組表現來得好。而細胞治療會有比較好的預後表現有可能是因為在此介入的方式中會縮短發炎期的時間,進而達到較佳的功能表現。
在本研究建立了一個專為小型實驗動物所設計的一個步態評估工具,此評估方法可以全方位的量測實驗動物在步行時的時間參數、空間參數以及關節活動度等相關的步行功能表現參數,並且有很好的再現性。此步態評估工具進而以阿基里斯腱修復的大鼠模型來驗證其評估的精確度,結果顯示出比步態評估較傳統的阿斯里斯功能指數的評估效果還要好。在與阿基里斯腱修復相關的高血糖及細胞治療的大鼠模型中,步態分析也展現出優異的評估效果,較目前多數研究所使用的評估方法更能反映出大鼠術後功能恢復之情形。步態分析除了有很好的信效度、評估敏感性之外,配合長期追縱的方式更能幫助減少實驗動物的使用數量。因此,本研究所使用之小型動物步態分析方法將有高度的潛力作為評估與行動障礙相關的動物模型之標準評估工具。
Video-based walking track systems have been developed for gait analysis in rat models in recent years. Those video-based gait analysis systems could determine not only the spatial parameters but also the temporal parameters. However, there is no previous study using video-based tracking systems has addressed the issue of gait analysis in evaluating of the recovery of Achilles tendon rupture model. From the clinical aspect, the functional recovery is more important than the anatomical recovery, but most of the relative animal studies were mainly assessed the anatomy recovery condition. Which could not be fully satisfied the clinical goals. Therefore, two main specific aims are included in this study. The first aim of this study is to set up a video-based gait analysis system for functional evaluation of healing Achilles tendon in rats. After system reliability and validity are established, the sensitivity between the Achilles functional index (AFI) and gait parameters using a video-based walking track gait analysis system is further analyzed. The second aim of this study is applying the video-based gait analysis system to evaluate two tendon healing models: hyperglycemic rats and tissue engineering treated rats, respectively.
The experimental animals underwent single limb Achilles tendon transection. In aim 1, the animals were randomly assigned to four interventional conditions: normal, sham surgery, Achilles tendon repair, and Achilles tendon defect. In aim 2, the animals were randomly assigned to two groups in hyperglycemic rats (defect and repair groups), and to three groups in tissue engineering treated rats (hyaluronic acid with cell, hyaluronic acid without cell, and normal saline injection groups). All animals were evaluated using a video-based gait analysis system after surgery, the gait parameters and AFI were further analyzed.
The video-based gait analysis system exhibited great reliability and validity. In spatial gait parameter analysis, similar trend of step length changes were found between sham-operated rats and the Achilles tendon injured rats. In temporal gait parameter analysis, different asymmetric levels of the hindlimb swing time were found between shame-operated rats and the Achilles tendon injured rats. The ankle joint angles of the injury side at mid-stance and pre-swing were highly correlated with AFI. Lack of sensitivity was found in the AFI, whereas better measurement sensitivity in different Achilles tendon healing condition was found in ankle joint angle of the injury limb at the pre-swing and asymmetric levels of the hindlimb joint position. The overall sensitivity of ankle motion analysis was significantly higher than that of AFI.
Due to the poor healing ability, the locomotion ability of the healing Achilles tendon in hyperglycemic rats was generally worse than the normal rats, especially the Achilles tendon defect in hyperglycemic rats. Therefore, the repair of the ruptured Achilles tendon might be more important in the hyperglycemic rats.
A significant difference in the recovery condition was found in the injured tendon injected with the hyaluronic acid solution with tenocytes compared with the other groups. The locomotion abilities of the rats with healing Achilles tendons were improved in the hyaluronic acid with tenocyte transplantation group. The acceleration of the inflammatory phase in rats with the hyaluronic acid with tenocyte injections might be the major reason for the better functional outcomes.
A video-based walking track system had been established in this study, which could be comprehensively and reproducibility evaluation the functional recovery condition of the experimental animal through the spatial, temporal, and joint movement parameters analysis. The reliability and validity of this gait analysis apparatus was verified by a healing Achilles tendon rat model. Compare to the traditional paw-based functional assessment, the gait analysis exhibited more sensitivity than the Achilles functional index. In the healing Achilles tendon relative hyperglycemic and cell therapy animal mode, the gait analysis also showed the excellent evaluation sensitivity. Compare to the evaluation methods that utilized in most of the relative studies, the gait analysis could be more directly reflected the real functional recovery condition of the healing Achilles tendon rats with different management protocols. Beside the good reliability, validity, and sensitivity of the video-based gait analysis, the amount of the experimental animal usage could be reduced by the long term follow up via gait function evaluation. Therefore, the video-based gait analysis would have great potential to be a standard assessment tool for the locomotion disability relative animal model.
1. Smart, G.W., J.E. Taunton, and D.B. Clement, Achilles tendon disorders in runners--a review. Med Sci Sports Exerc, 1980. 12(4): p. 231-43.
2. O'Brien, M., The anatomy of the Achilles tendon. Foot Ankle Clin, 2005. 10(2): p. 225-38.
3. O'Brien, M., Functional anatomy and physiology of tendons. Clin Sports Med, 1992. 11(3): p. 505-20.
4. Hess, G.P., W.L. Cappiello, R.M. Poole, and S.C. Hunter, Prevention and treatment of overuse tendon injuries. Sports Med, 1989. 8(6): p. 371-84.
5. Kirkendall, D.T. and W.E. Garrett, Function and biomechanics of tendons. Scand J Med Sci Sports, 1997. 7(2): p. 62-6.
6. Sharma, P. and N. Maffulli, Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am, 2005. 87(1): p. 187-202.
7. O'Brien, M., Structure and metabolism of tendons. Scand J Med Sci Sports, 1997. 7(2): p. 55-61.
8. Williams, J.G., Achilles tendon lesions in sport. Sports Med, 1986. 3(2): p. 114-35.
9. Carr, A.J. and S.H. Norris, The blood supply of the calcaneal tendon. J Bone Joint Surg Br, 1989. 71(1): p. 100-1.
10. Astrom, M., Laser Doppler flowmetry in the assessment of tendon blood flow. Scand J Med Sci Sports, 2000. 10(6): p. 365-7.
11. Soldatis, J.J., D.B. Goodfellow, and J.H. Wilber, End-to-end operative repair of Achilles tendon rupture. Am J Sports Med, 1997. 25(1): p. 90-5.
12. Dodds, W.N. and H.C. Burry, The relationship between Achilles tendon rupture and serum uric acid level. Injury, 1984. 16: p. 94-95.
13. Dent, C.M. and G.P. Graham, Osteogenesis imperfecta and Achilles tendon rupture. Injury, 1991. 22(3): p. 239-40.
14. Arner, O., A. Lindholm, and S.R. Orell, Histologic changes in subcutaneous rupture of the Achilles tendon; a study of 74 cases. Acta Chir Scand, 1959. 116(5-6): p. 484-90.
15. Maffulli, N., A.S. Irwin, M.G. Kenward, F. Smith, and R.W. Porter, Achilles tendon rupture and sciatica: a possible correlation. Br J Sports Med, 1998. 32(2): p. 174-7.
16. Yuan, J., G.A. Murrell, A.Q. Wei, and M.X. Wang, Apoptosis in rotator cuff tendonopathy. J Orthop Res, 2002. 20(6): p. 1372-9.
17. Machner, A., A. Baier, A. Wille, S. Drynda, G. Pap, A. Drynda, C. Mawrin, F. Buhling, S. Gay, W. Neumann, and T. Pap, Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis. Arthritis Res Ther, 2003. 5(5): p. R253-61.
18. Krahe, M.A. and G.C. Berlet, Achilles tendon ruptures, re rupture with revision surgery, tendinosis, and insertional disease. Foot Ankle Clin, 2009. 14(2): p. 247-75.
19. Chen, J., Q. Yu, B. Wu, Z. Lin, N.J. Pavlos, J. Xu, H. Ouyang, A. Wang, and M.H. Zheng, Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng Part A, 2011. 17(15-16): p. 2037-48.
20. Chen, J.M., C. Willers, J. Xu, A. Wang, and M.H. Zheng, Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng, 2007. 13(7): p. 1479-91.
21. Clarke, A.W., F. Alyas, T. Morris, C.J. Robertson, J. Bell, and D.A. Connell, Skin-derived tenocyte-like cells for the treatment of patellar tendinopathy. Am J Sports Med, 2011. 39(3): p. 614-23.
22. Stoll, C., T. John, C. Conrad, A. Lohan, S. Hondke, W. Ertel, C. Kaps, M. Endres, M. Sittinger, J. Ringe, and G. Schulze-Tanzil, Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials, 2011. 32(21): p. 4806-15.
23. Chong, A.K.S., A.D. Ang, J.C.H. Goh, J.H.P. Hui, A.Y.T. Lim, E.H. Lee, and B.H. Lim, Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. Journal of Bone and Joint Surgery-American Volume, 2007. 89A(1): p. 74-81.
24. Awad, H.A., D.L. Butler, G.P. Boivin, F.N. Smith, P. Malaviya, B. Huibregtse, and A.I. Caplan, Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng, 1999. 5(3): p. 267-77.
25. Juncosa-Melvin, N., G.P. Boivin, C. Gooch, M.T. Galloway, J.R. West, M.G. Dunn, and D.L. Butler, The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng, 2006. 12(2): p. 369-79.
26. Noble, P.W., Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol, 2002. 21(1): p. 25-9.
27. Zimmerman, E., B. Geiger, and L. Addadi, Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophysical Journal, 2002. 82(4): p. 1848-1857.
28. Funakoshi, T., T. Majima, N. Iwasaki, N. Suenaga, N. Sawaguchi, K. Shimode, A. Minami, K. Harada, and S. Nishimura, Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. American Journal of Sports Medicine, 2005. 33(8): p. 1193-1201.
29. Kutty, J.K., E. Cho, J.S. Lee, N.R. Vyavahare, and K. Webb, The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials, 2007. 28(33): p. 4928-4938.
30. Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 2004. 4(7): p. 528-39.
31. Zimmerman, E., B. Geiger, and L. Addadi, Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys J, 2002. 82(4): p. 1848-57.
32. Funakoshi, T., T. Majima, N. Iwasaki, N. Suenaga, N. Sawaguchi, K. Shimode, A. Minami, K. Harada, and S. Nishimura, Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. Am J Sports Med, 2005. 33(8): p. 1193-201.
33. Kutty, J.K., E. Cho, J. Soo Lee, N.R. Vyavahare, and K. Webb, The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials, 2007. 28(33): p. 4928-38.
34. Chaturvedi, N., The burden of diabetes and its complications: trends and implications for intervention. Diabetes Res Clin Pract, 2007. 76 Suppl 1: p. S3-12.
35. Smith, L.L., S.P. Burnet, and J.D. McNeil, Musculoskeletal manifestations of diabetes mellitus. Br J Sports Med, 2003. 37(1): p. 30-5.
36. Holmes, G.B. and J. Lin, Etiologic factors associated with symptomatic achilles tendinopathy. Foot Ankle Int, 2006. 27(11): p. 952-9.
37. Longo, U.G., F. Franceschi, L. Ruzzini, F. Spiezia, N. Maffulli, and V. Denaro, Higher fasting plasma glucose levels within the normoglycaemic range and rotator cuff tears. Br J Sports Med, 2009. 43(4): p. 284-7.
38. Reddy, G.K., Glucose-mediated in vitro glycation modulates biomechanical integrity of the soft tissues but not hard tissues. J Orthop Res, 2003. 21(4): p. 738-43.
39. Maffulli, N., U.G. Longo, G.D. Maffulli, A. Khanna, and V. Denaro, Achilles tendon ruptures in diabetic patients. Arch Orthop Trauma Surg, 2011. 131(1): p. 33-8.
40. Bring, D.K., A. Kreicbergs, P.A. Renstrom, and P.W. Ackermann, Physical activity modulates nerve plasticity and stimulates repair after Achilles tendon rupture. J Orthop Res, 2007. 25(2): p. 164-72.
41. Yeung, C.K., X. Guo, and Y.F. Ng, Pulsed ultrasound treatment accelerates the repair of Achilles tendon rupture in rats. J Orthop Res, 2006. 24(2): p. 193-201.
42. See, E.K., G.Y. Ng, C.O. Ng, and D.T. Fung, Running exercises improve the strength of a partially ruptured Achilles tendon. Br J Sports Med, 2004. 38(5): p. 597-600.
43. Murrell, G.A., E.G. Lilly, H. Davies, T.M. Best, R.D. Goldner, and A.V. Seaber, The Achilles Functional Index. J Orthop Res, 1992. 10(3): p. 398-404.
44. Don, R., A. Ranavolo, A. Cacchio, M. Serrao, F. Costabile, M. Iachelli, F. Camerota, M. Frascarelli, and V. Santilli, Relationship between recovery of calf-muscle biomechanical properties and gait pattern following surgery for achilles tendon rupture. Clin Biomech (Bristol, Avon), 2007. 22(2): p. 211-20.
45. Walker, J.L., J.M. Evans, P. Resig, S. Guarnieri, P. Meade, and B.S. Sisken, Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp Neurol, 1994. 125(2): p. 302-5.
46. Couto, P.A., V.M. Filipe, L.G. Magalhaes, J.E. Pereira, L.M. Costa, P. Melo-Pinto, J. Bulas-Cruz, A.C. Mauricio, S. Geuna, and A.S. Varejao, A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. J Neurosci Methods, 2008. 173(2): p. 193-200.
47. Filipe, V.M., J.E. Pereira, L.M. Costa, A.C. Mauricio, P.A. Couto, P. Melo-Pinto, and A.S. Varejao, Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats. J Neurosci Methods, 2006. 153(1): p. 55-61.
48. de Ruiter, G.C., R.J. Spinner, A.O. Alaid, A.J. Koch, H. Wang, M.J. Malessy, B.L. Currier, M.J. Yaszemski, K.R. Kaufman, and A.J. Windebank, Two-dimensional digital video ankle motion analysis for assessment of function in the rat sciatic nerve model. J Peripher Nerv Syst, 2007. 12(3): p. 216-22.
49. Amado, S., P.A. Armada-da-Silva, F. Joao, A.C. Mauricio, A.L. Luis, M.J. Simoes, and A.P. Veloso, The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush. Behav Brain Res, 2011. 225(2): p. 562-73.
50. Angeby-Moller, K., O.G. Berge, and F.P. Hamers, Using the CatWalk method to assess weight-bearing and pain behaviour in walking rats with ankle joint monoarthritis induced by carrageenan: effects of morphine and rofecoxib. J Neurosci Methods, 2008. 174(1): p. 1-9.
51. Liu, W., B. Chen, D. Deng, F. Xu, L. Cui, and Y. Cao, Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng, 2006. 12(4): p. 775-88.
52. Tanil, Y.Y.E., Initial pull-out strength of tendon sutures: An in vitro study in sheep Achilles tendon. Foot & ankle international, 2002. vol. 23(no12): p. 1126-1130.
53. Bergljung, L., Vascular reactions after tendon suture and tendon transplantation. A stereo-microangiographic study on the calcaneal tendon of the rabbit. Scand J Plast Reconstr Surg Suppl, 1968. 4: p. 7-63.
54. Robinson, R.O., W. Herzog, and B.M. Nigg, Use of Force Platform Variables to Quantify the Effects of Chiropractic Manipulation on Gait Symmetry. Journal of Manipulative and Physiological Therapeutics, 1987. 10(4): p. 172-176.
55. Gouwanda, D. and S.M.N.A. Senanayake, Identifying gait asymmetry using gyroscopes-A cross-correlation and Normalized Symmetry Index approach. Journal of Biomechanics, 2011. 44(5): p. 972-978.
56. Clarke, K.A. and J. Still, Gait analysis in the mouse. Physiol Behav, 1999. 66(5): p. 723-9.
57. Ng, C.O., G.Y. Ng, E.K. See, and M.C. Leung, Therapeutic ultrasound improves strength of achilles tendon repair in rats. Ultrasound Med Biol, 2003. 29(10): p. 1501-6.
58. Fu, S.C., K.M. Chan, L.S. Chan, D.T. Fong, and P.Y. Lui, The use of motion analysis to measure pain-related behaviour in a rat model of degenerative tendon injuries. J Neurosci Methods, 2009. 179(2): p. 309-18.
59. Dellon, E.S. and A.L. Dellon, Functional assessment of neurologic impairment: track analysis in diabetic and compression neuropathies. Plast Reconstr Surg, 1991. 88(4): p. 686-94.
60. Liang, J.I., M.Y. Chen, T.H. Hsieh, C.Y. Liu, C.F. Lam, J.J. Chen, and M.L. Yeh, Video-based Gait Analysis for Functional Evaluation of Healing Achilles Tendon in Rats. Ann Biomed Eng, 2012.
61. Li, R., A. Nauth, C. Li, E. Qamirani, K. Atesok, and E.H. Schemitsch, Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs. J Orthop Trauma, 2012. 26(12): p. 689-92.
62. Liang, J.I., M.Y. Chen, T.H. Hsieh, C.Y. Liu, C.F. Lam, J.J. Chen, and M.L. Yeh, Video-based Gait Analysis for Functional Evaluation of Healing Achilles Tendon in Rats. Ann Biomed Eng, 2012. 40(12): p. 2532-40.
63. Hagberg, L. and G. Selvik, Tendon excursion and dehiscence during early controlled mobilization after flexor tendon repair in zone II: an x-ray stereophotogrammetric analysis. J Hand Surg Am, 1991. 16(4): p. 669-80.
64. Ketchum, L.D., Primary tendon healing: a review. J Hand Surg Am, 1977. 2(6): p. 428-35.
65. Seradge, H., Elongation of the repair configuration following flexor tendon repair. J Hand Surg Am, 1983. 8(2): p. 182-5.
66. Silfverskiold, K.L., E.J. May, and A.H. Tornvall, Gap formation during controlled motion after flexor tendon repair in zone II: a prospective clinical study. J Hand Surg Am, 1992. 17(3): p. 539-46.
67. Gelberman, R.H., M.I. Boyer, M.D. Brodt, S.C. Winters, and M.J. Silva, The effect of gap formation at the repair site on the strength and excursion of intrasynovial flexor tendons - An experimental study on the early stages of tendon-healing in dogs. Journal of Bone and Joint Surgery-American Volume, 1999. 81A(7): p. 975-982.
68. Oshiro, W., J. Lou, X. Xing, Y. Tu, and P.R. Manske, Flexor tendon healing in the rat: a histologic and gene expression study. J Hand Surg Am, 2003. 28(5): p. 814-23.