簡易檢索 / 詳目顯示

研究生: 蘇彥勳
Su, Yen-Hsun
論文名稱: 金奈米粒子形成蕭基式能障用於染料敏化太陽能電池
Gold Nanoparticles as a Schottky Barrier in Dye-sensitized Solar Cell
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 金奈米粒子蕭基式能障染料敏化太陽能電池
外文關鍵詞: Gold Nanoparticles, Schottky Barrier, Dye-sensitized Solar Cell
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池之染料吸收可見光轉換成電能。由於此種太陽能電池成本比半導體接合(junction)太陽能電池低,且可得到高光電轉換效率,因此受到相當的矚目。但氧化物半導體傳導帶之電子會跳回染料分子或電解液中,而使光電轉換效率降低。本研究中,試圖使用自組裝方式將金奈米粒子組裝於二氧化鈦之表面形成蕭基式能障,以減少電子跳回染料分子或電解液之機率,以增加光電轉換效率。
    本實驗使用介面活性劑TOAB合成粒徑為6 nm金奈米粒子,並將金奈米粒子自組裝於二氧化鈦之表面做為染料敏化太陽能電池之蕭基式能障。金奈米粒子最大被覆率為85 %。在界面電性分析上,被覆金奈米粒子會使二氧化鈦電極之表面產生蕭基式能障。並將之組成染料敏化太陽能電池,表面電漿子可使二氧化鈦之光電轉換效率提升至0.18%。當金奈米粒子做為蕭基式能障時,以紅藥水為染料之染料敏化太陽能電池,其光電轉換效率由0.256 %提升至0.963 %。同時,亦可使葉綠素為染料之染料敏化太陽能電池光電轉換功率由0.205 %提升至0.705 %。榕樹和鴉拓草為天然植物染料之環保染料敏化太陽能電池,光電轉換效率為0.630 %和0.655 %。當使用金奈米粒子為蕭基是能障時,榕樹和鴉拓草為天然植物染料之環保染料敏化太陽能電池光電轉換效率更可達1.180 %和1.490 %。

    Dye converses visible light into photoelectric power in dye-sensitized solar cell (DSSC), which is more inexpensive than junction semiconductor solar cell. However the transportation of concentration-driven electron is slow between the dye and electrode without the Schottky barrier in DSSC. When an electron in the dye passes the Au thin layer through tunneling to the conduction band of the TiO2, it is unable to go back to either the dye or the electrolyte due to the Schottky barrier. In this study, we synthesized 6 nm Au nanoparticles by surfactants-TOAB and fabricated on the surface of TiO2 layer as the electrode of DSSC by self-assembly method. The maximum coverage of Au nanoparticles on the surface of TiO2 layer is 85 . The Schottky barrier is formed between the Au nanoparticles and TiO2 layer. Besides, surface plasmon resonance induces photoexcited electron to TiO2 layer. Efficiency of conversion is 0.18 . When Au nanoparticles act as the Schottky barrier, efficiency of photoelectric conversion for mercurochrome increases from 0.26 to 0.96 %. Efficiency of photoelectric conversion for chlorophyll yields from 0.205% up to 0.705 %. When Ficus Reusa Linn and Rhoeo spathacea(Sw.) Stearn act as natural dyes in green DSSC, efficiencies of photoelectric conversion are 0.630 % and 0.655 %, respectively. When Au nanoparticles act as the Schottky barrier in green DSSCs, efficiencies of photoelectric conversion yield up to 1.180 % and 1.490 %.

    總目錄 摘要 Ⅰ Abstract Ⅱ 總目錄 Ⅲ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 4 第二章 文獻回顧 5 2-1 金奈米粒子化學性質 5 2-1-1 自組裝方式 5 2-1-2 Brust-Schiffin方式 5 2-1-3 層堆方式 7 2-2 金奈米粒子物理性質 12 2-2-1 表面電漿子 12 2-2-2表面電漿子在染料敏化太陽能電池之應用 12 2-3 蕭基式能障 14 2-3-1 蕭基式能障之物理性質 14 2-3-2蕭基式能障在染料敏化太陽能電池之應用 15 2-4 染料敏化太陽能電池 19 2-4-1染料敏化太陽能電池原理 19 2-4-2 紅藥水 20 2-4-3 葉綠素 22 2-4-4 電解液之選用 24 2-4-5光電轉換效率 24 第三章 實驗方法與步驟 26 3-1 實驗藥品 26 3-2 實驗步驟 27 3-2-1 金奈米粒子製備 27 3-2-2 二氧化鈦電極層製備 28 3-2-3 金奈米粒子層製備 30 3-2-4 蕭基式能障測試 33 3-2-5 染料敏化太陽能電池製備 34 3-3材料分析項目 37 3-3-1 金奈米粒子之形態和結構 37 3-3-2 金奈米粒子之厚度和被覆率 37 3-3-3 紫外光-可見光吸收光譜儀量測光之吸收和穿透度 39 3-3-4 蕭基式能障電性特性 39 3-3-5 光轉換效率 39 第四章 結果與討論 41 4-1-1 在不同TOAB濃度下金奈米粒子粒徑 41 4-1-2 金奈米粒子結構與光性 42 4-2 在不同溶劑下製作層堆金奈米粒子 45 4-2-1 金奈米粒子在電極上之厚度和被覆率 45 4-2-1-1 使用甲苯溶劑之金奈米粒子在電極上之厚度和被覆率 45 4-2-1-2 使用己烷溶劑之金奈米粒子在電極上之厚度和被覆率 46 4-2-1-3 使用不同溶劑之金奈米粒子在電極上之厚度和被覆率之比較 47 4-2-2 金奈米粒子在電極上之光穿透率 51 4-2-2-1 使用甲苯溶劑之金奈米粒子在電極上之光穿透率 51 4-2-2-2 使用己烷溶劑之金奈米粒子在電極上之光穿透率 52 4-2-2-3 使用不同溶劑之金奈米粒子在電極上之光穿透率之比較 53 4-2-3 層堆金奈米粒子之暗場電性分析 55 4-2-3-1 使用甲苯溶劑層堆金奈米粒子之暗場電性分析 55 4-2-3-2 使用己烷溶劑層堆金奈米粒子之暗場電性分析 56 4-2-3-3 使用不同溶劑層堆金奈米粒子之暗場電性分析之比較 57 4-2-4 層堆金奈米粒子之光電轉換效率(已烷溶劑為例) 61 4-3 層堆金奈米粒子在染料太陽能電池之應用 64 4-3-1 以紅藥水為染料之吸收光譜、發射光譜、光電轉換效率 64 4-3-2 以商用葉綠素為染料吸收光譜、發射光譜、光電轉換效率 68 4-3-3-2 以天然植物為染料之光電轉換效率 72 4-3-3-3 天然植物為染料開路電壓(VOC)和短路電流密度(JSC)之比較 73 4-3-3-4 天然植物為染料光電轉換效率()之比較 74 第五章 結論 83 參考文獻 85 誌謝 90

    參考文獻
    [1] L. J. Sherry, S. -H. Chang, G. C. Schatz, R. P. V. Duyne, B. J. Wiley, Y. Xia, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes”, Nano Lett. 5, 2034-2038 (2005).
    [2] E. -S. Kwak, J. Henzie, S. -H. Chang, S. K. Gray, G. C. Schatz, T. W. Odom, "Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays”, Nano Lett. 5, 1963 (2005).
    [3] S. -H. Chang, S. K. Gray, and G. C. Schatz, "Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films”, Opt. Express 13, 3150-3165 (2005).
    [4] C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer , S. -H. Chang, S. K. Gray, G. P. Wiederrecht, G.C. Schatz, “Near-field Photochemical Imaging of Noble Metal Nanostructures”, Nano Lett. 5, 615-619 (2005).
    [5] L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp1, S. -H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, C. W. Kimball, “Surface Plasmons at Single Nanoholes in Au-films”, Appl. Phys. Lett. 85, 467-469 (2004).
    [6] S. Link, M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver nanodots and Nanorods”, J. Phys. Chem. B 103, 8410-8426 (1999).
    [7] R. Jin, Y. C. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms”, Science 294, 1901-1903 (2001).
    [8] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schults, S. J. Schults, “Plasmon Resonance of Individual Colloidal Silver Nanoparticles”, J. Chem. Phys. 116, 6755-6759 (2002).
    [9] E. A. Stern, R. A. Ferrell, “Predicted Radiation of Plasmon Oscillation in Metal Films”, Phys. Rev. 111, 1214-1222 (1958).
    [10] R. H. Ritchie, H. B. Eldridge, “Optical Emission from Irradiated Foils”, Phys. Rev. 126, 1935-1947 (1962).
    [11] M. Grätzel, “Applied physics: Solar cells to dye for”, Nature 421, 586-587 (2003).
    [12] K. Tennakone, P. K. M. Bandaranayake, P. V. V. Jayaweera, A. Konno, G. R. R. A. Kumara, “Dye-sensitized Composite Semiconductor Nanostructures”, Physica E 14, 190-196 (2002).
    [13] E. W. McFarland and J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature 421, 616-618 (2003).
    [14] G. M. Whitesides, B. Grzyboski, “Molecular Self-Assembly papers • Beyond molecules: Self-assembly of mesoscopic and macroscopic components”, Science 295, 2418-2421 (2002).
    [15] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System”, J. Chem. Soc. Chem. Commun. 5 , 801-802 (1994).
    [16] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, “Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt.“ , Science 291, 2115-2117 (2001).
    [17] L. Guo, Q. Huang, X. -Y. Li, S. Yan, ”Iron Nanoparticles: Synthesis and Applications in Surface Enhanced Raman Scattering and Electrocatalysis.”, Phys. Chem. Chem. Phys. 3, 1661-1665 (2001).
    [18] S. -J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon, “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres.”, J. Am. Chem. Soc. 122, 8581-8582 (2000).
    [19]郭清癸、黃俊傑、牟中原, ”金屬奈米粒子的製造”, 物理雙月刊(廿三卷六期), 614-624 (2001年12月).
    [20] Y. H. Su, L. G. Teoh, W. H. Lai, S. -H. Chang, H. –C. Yang, and M. H. Hon, “Ellipsometric Advances for Local Surface Plasmons Resonance to Determine Chitosan Adsorption on Layer-by-layer Gold Nanoparticles”, Appl. Spectrasc. (in press).
    [21] Y. H. Su, W. H. Lai, L. G. Teoh, M. H. Hon, J. L. Huang, “Layer-by-layer Au Nanoparticles as a Schottky Barrier in Water-based Dye-sensitized Solar Cell”, Appl. Phys. A: Mater. Sci. & Proc. 88, 173-178 (2007).
    [22] C. Ritchie, “Plasma Losses by Fast Electrons in Thin Films”,Phys. Rev. 106, 874-881 (1957).
    [23] C. F. Borhren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience, Chap.4, 1988.
    [24] Y. S. Shon, S. M. Gross, B. Dawson, M. Porter, R. W. Murray, “Alkanethiolate Protected Gold Clusters Generated from Sodium S-dodecylthiosulfate (Bunte Salts)”, Langmuir 16, 6555-6561 (2000).
    [25] J. C. Maxwell-Garnet, “Colors in Metal Glasses and in Metallic Films”, Philos. Trans. R. Soc. A 203, 385-420 (1904).
    [26] Y. Tain, T. Tatauma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, J. Am. Chem. Soc. 127, 7632-7637 (2005).
    [27] C. Kittel, “Introduction to Solid State Physics”, John Wiley & Sons Canada (1976), p.239-247.
    [28] B. O'Regan, M. Graetzel, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature 353, 737-739 (1991).
    [29] A. Kay, M. Grätzel, “Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins”, J. Phys. Chem. 97, 6272-6277 (1993).
    [30] G.P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: a Nature Dye-sensitized Nanocrystalline Energy Converter”, J. Chem. Educ. 75, 752-756 (1998).
    [31] B. R. Speer, “Photosynthetic Pigments" in UCMP Glossary (online). University of California, Berkeley Museum of Paleontology (2007).
    [32] H. Saito, S. Uegusa, T. N. Murakami, N. Kawashima, and T. Miyasaka, “Fabrication and Efficiency Enhancement of Water-based Dye-Sensitized Solar Cells by Interfacial Activation of TiO2 Mesopores”, Electrochemistry, 72, 310-316(2004).
    [33] G. P. Smestad, “Optoelectronics of Solar Cells”, SPIE-The International Society for Optical Engineering Bellingham Washington (2002), p. 19-21.
    [34] D. Roy, J. Fendler, “Reflection and Absorption Technology for Optical Characterization of Chemically Assembled Nanomaterials”, Adv. Mater. 16, 479-508 (2004).
    [35] Y. H. Su, W. H. Lai, S. -H. Chang, M. H. Hon, “Surfactants-aided Syntheses of Different Sizes and Triangular Shape of Gold Particles Using Trisodium Citrate in Environmentally Friendly and Photoinduced Methods”, Journal of Nanosci. and Nanotechnol. (in press).
    [36] H. -L. Zhang, S. D. Evans, J. R. Henderson, ”Spectroscopic Ellipsometric Evaluation of Gold Nanoparticle Thin Films Fabricated by Layer-by-Layer Self-Assembly”, Adv. Mater. 15, 531-534 (2003).
    [37] Y. H. Su, W. H. Lai, W.-Y. Chen, M. H. Hon, S.-H. Chang, “Surface Plasmon Resonance of Gold Nano-sea-urchin”, Appl. Phys. Lett. 90, 181905 (2007)
    [38] M. Fox, “Optical Properties of Solids”, Oxford University Press (2001), p. 3-6.
    [39] S. Hao, J. Wu, Y. Huang, J. Lin, “Natural Dyes as Photosensitizers for Dye-sensitized Solar Cell”, Solar Energy 80, 209 (2006).
    [40] A.S. André, S. Polo, N. Yukie, M. Iha, “Blue Sensitizers for Solar Cells: Natural Dyes from Calafate and Jaboticaba”, Solar Energy Mater. & Solar Cells 90, 1936 (2006).
    [41] Q. N. Lu, Q. Yang, H. W. Zou, “Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato Cell Tissue Cultures”, J. Rar. Eart. 24, 479-484 (2006).

    下載圖示 校內:2008-07-21公開
    校外:2008-07-21公開
    QR CODE