簡易檢索 / 詳目顯示

研究生: 王維新
Wang, Wei-Hsin
論文名稱: 以加速度及心電訊號為基礎之熱量消耗分析網路平台
An Energy Consumption Analysis System for Daily Activity Using HR and Motion Acceleration
指導教授: 詹寶珠
Chung, Pau-Choo
共同指導教授: 王振興
Wang, Jeen-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 熱量消耗分析系心電訊號心電收集裝置熱量消耗
外文關鍵詞: energy consumption estimation, HR, Bluetooth transmission, Energy consumption
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一套熱量消耗分析系統,其利用感測器記錄使用者身體活動之加速度訊號以及心電訊號,並透過訊號演算法分析訊號以獲得熱量消耗之結果。此系統包含一部分析伺服器及一套穿戴式感測器。穿戴式感測器包含三個具無線傳輸功能的加速度感測器及心電收集裝置,感測器負責收集加速度訊號和心電訊號,其中主感測器上有藍芽無線傳輸模組,可將訊息透過藍芽與電腦溝通;分析伺服器負責資料儲存、演算法分析以及結果呈現。
    在代謝當量估測演算法中,本論文利用配戴於使用者手腕、腰部和腳部之加速度感測器進行加速度訊號蒐集,加入使用者的心跳值,並且以K4b2氣體交換分析儀所量測之熱量消耗做為標準,建構一活動所產生熱量消耗之迴歸方程式。在進行代謝當量估測演算法前,加速度訊號須先經過重力濾除與視窗化的前處理,再將處理過之訊號取其count值,加入心跳以及使用者個人參數(身高、體重、性別、和年齡)建構活動的代謝當量映射迴歸方程式,以估測熱量消耗。在本論文中利用心跳值的加入,改善單純只用加速度值所建構之迴歸方程式,其原因為改善無法量測肌肉等長運動之加速度訊號,以及上下樓梯與地板之反作用力之影響。

    This thesis presents an energy consumption estimation (ECE) system using the feature information from a set of wearable biosignal sensors recording user’s motion accelerations and electrocardiography (ECG). The ECE system consists of a set of wearable biosignal sensors (one host recorder and two client sensors), ECG holter and an analysis server. Each client sensor comprises an accelerometer (G-sensor), a RF module, and a microprocessor. The host recorder integrates a client sensor with a microcontroller unit (MCU), a memory unit and a Bluethooth module. The set of the biosignal sensors are responsible to collect motion accelerations from user’s hand, waist and ankle, respectively, and transmit to the memory unit of the host sensor. To analyze the collected accelerations, users can transmit the accelerations to the analysis server through Bluetooth transmission. Within the analysis server there are three modules: data collection module, analysis module and database module. The analysis module computes energy expenditure by mapping accelerations to MET values. Since the energy consumption by some activities cannot be measured from only accelerations, ECG is applied to improve the estimation accuracy of the system.
    The procedures of the MET mapping algorithm are as follows. First, a low-pass filter is applied to remove the noise, and then a high-pass filter to remove the influence of gravity. A sliding window of size 60 seconds is adopted to calculate the count value that interprets continuous acceleration signals as discrete values. In this study, a K4b2 oxymeter is used to measure METs for different activities and the measured METs are regarded as the ground truth. Then the count values, heart rates, and personal information (height, weight, gender and age) are used to construct a regression model for estimating the MET values for different physical activities. The experimental results indicate that motion accelerations with heart-rate information, energy consumption can be more accurately estimated, especially for activities associated with reaction force such as climbing stairs or doing therapeutic exercises.

    中文摘要i 英文摘要iii 致謝iv 目錄v 表目錄ix 圖目錄x 第一章 緒論1-1 1.1 研究背景與動機1-1 1.2 文獻探討1-2 1.3 研究目的1-5 1.4 論文架構1-6 第二章 硬體架構2-1 2.1 活動量感測之硬體設計2-2 2.1.1 主感測器架構 2-2 2.1.2 副感測器架構2-4 2.1.3 中央處理單元(MCU)2-5 2.1.4 加速度感測晶片2-5 2.1.5 記憶體模組2-7 2.1.6 藍芽模組2-8 2.1.7 RF模組2-9 2.1.8 電源管理晶片2-9 2.1.9 心電訊號記錄蒐集模組2-10 2.2 電腦應用程式2-11 2.2.1 程式內部流程2-11 2.2.2 程式使用流程2-13 2.3 記憶體狀態配置2-16 第三章 網路系統平台3-1 3.1 伺服器架構3-2 3.1.1 資料分析與網頁伺服器3-5 3.1.1.1 資料蒐尋模組3-5 3.1.1.2 網頁伺服器3-6 3.1.2 分析伺服器3-6 3.1.2.1 演算法模組3-6 3.1.3 資料庫伺服器3-7 3.2 網頁數據呈現3-7 3.3 資料庫架構3-9 3.3.1 使用者列表3-10 3.3.2 未分析之生理資訊列表3-11 3.3.3 已分析之生理資訊列表3-12 3.3.4 使用者登入列表3-13 3.3.5 使用者登入歷史紀錄列表3-14 3.3.6 服務內容列表3-15 3.3.7 熱量消耗分析結果列表3-15 3.4 模組與資料庫之關係3-17 3.4.1 登入模組與相關資料庫列表3-17 3.4.2 資料蒐集模組與相關資料庫列表3-17 3.4.3 演算法分析模組與相關資料庫列表3-18 第四章 代謝當量映射模型演算法分析4-1 4.1 實驗架構與流程4-1 4.1.1 受測人數4-1 4.1.2 受測之動作類別4-2 4.1.3 受測場所4-4 4.1.4 加速度訊號感測器4-4 4.1.5 心電訊號4-6 4.1.6 K4B2氣體交換分析儀4-6 4.2 特徵參數選取4-7 4.2.1 資料前處理4-8 4.2.2 加速度訊號count值4-9 4.2.3 心跳參數4-11 4.2.4 個人參數4-11 4.3 代謝當量映射模型演算法4-12 第五章 實驗結果5-1 5.1代謝當量之映射迴歸方程式實驗結果5-1 5.2 網頁頁面呈現結果5-6 第六章 結論與未來工作6-1 6.1 結論6-1 6.2 未來工作6-2 參考文獻7-1

    [1]行政院衛生署國民健康局, http://www.bhp.doh.gov.tw/BHPnet/Portal/Them_Show.aspx?Subject=200712250028&Class=2&No=200903250002
    [2]Active Living Research, http://www.activelivingresearch.org/node/11944
    [3]S. Schulz, K. R. Westerterp, and K. Brück, “Comparison of energy expenditure by the double labeled water technique with energy intake, heart rate, and activity recording in man,” American Society for Clinical Nutrition, vol. 49, no. 6, pp. 1146-1154, 1989.
    [4]A. M. Swartz, S. J. Strath, D. R. Bassett, W. L. O’brien, G. A. King, and B. E. Ainsworth, “Estimation of energy expenditure using CSA accelerometers at hip and wrist sites,” Medicine & Science in Sports & Exercise, vol. 32, no. 9, pp. S450-S456, 2000.
    [5]M. P. Rothney, M. Neumann, and A. Béziat, “An artificial neural network model of energy expenditure using nonintegrated acceleration signals,” Eur. Journal of Applied Physiology, vol. 103, no. 4, pp. 1419-1427, 2007.
    [6]S. E. Crouter, J. R. Churilla, and D. R. Bassett Jr, “Estimating energy expenditure using accelerometers,” Eur. Journal of Applied Physiology, vol. 98, no. 6, pp. 601-612, 2006.
    [7]D. R. Bassett Jr, B. E. Ainsworth, A. M. Swartz, S. J. Strath, W. L. O’brien, and G. A. King, “Validity of four motion sensors in measuring moderate intensity physical activity,” Medicine & Science in Sports & Exercise, vol. 32, no. 9, pp. S471-S480, 2000.
    [8]A. G. Brooks, S. M. Gunn, R. T. Withers, C. J. Gore, and J. L. Plummer, “Predicting walking METs and energy expenditure from speed or accelerometry,” Medicine & Science in Sports & Exercise, vol. 37, no. 7, pp. 1216-1223, 2005.
    [9]K. Y. Chen and D. R. Bassett, “The technology of accelerometry-based activity monitors: Current and future,” Medicine & Science in Sports & Exercise, vol. 37, no. 11, pp. S490-S500, 2005.
    [10]Actigraph, http://www.ipenproject.org/pdf_file/GT1M%20Information.pdf
    [11]D. R. Bouchard and F. Trudeau, “Estimation of energy expenditure in a work environment: Comparison of accelerometry and oxygen consumption/heart rate regression,” Ergonomics, vol. 51, no. 5, pp. 663-670, 2008.
    [12]J. J. Honas, R. A. Washbur, B. K. Smith, J. L. Greene, and J. E. Donnelly, “Energy expenditure of the physical activity across the curriculum intervention,” Medicine & Science in Sports & Exercise, vol. 40, no. 8, pp. 1501-1505, 2008.
    [13]K. L. Campbell, P. R. Crocker, and D. C. McKenzie, “Field evaluation of energy expenditure in women using Tritrac accelerometers,” Medicine & Science in Sports & Exercise, vol. 34, no. 10, pp. 1667-1674, 2002.
    [14]S. J. Strath, D. R. Bassett Jr, A. M. Swartz, and D. L. Thompson, “Simultaneous heart rate-motion sensor technique to estimate energy expenditure,” Medicine & Science in Sports & Exercise, vol. 33, no. 12, pp. 2118-2123, 2001.
    [15]M. L. Fruin and J. W. Rankin, “Validity of a multi-sensor armband in estimating rest and exercise energy expenditure,” Medicine & Science in Sports & Exercise, vol. 36, no. 6, pp. 1063-1069, 2004.
    [16]M. Sung, C. Marci, and A. Pentland, “Wearable feedback systems for rehabilitation,” Journal of Neuroengineering and Rehabilitation, vol. 2, no. 17, pp. 1-12, 2005.
    [17]Institute for Infocomm Research, http://dicom.i2r.a-star.edu.sg/ehealth/
    [18]U. Sana, K. Perve, U. Niamat, S. Shahnaz, H. Henr, and S. K. Kyung, “A review of wireless body area networks for medical applications,” International Journal of Communications, Network and System Sciences, vol. 2, no. 8, pp. 797-803, 2009.
    [19]E. Jovanov, A. Milenkovic, C. Otto, and P. de Groen, “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” Journal of Neuroengineering and Rehabilitation, vol. 2, no. 6, 2005.
    [20]N. Oliver and F. Flores-Mangas, “HealthGear: Automatic sleep apnea detection and monitoring with a mobile phone,” Journal of Communications, vol. 2, no. 2, pp. 1-9, 2007.
    [21]C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System architecture of a wireless body area sensor network for ubiquitous health monitoring,” Journal of Mobile Multimedia, vol. 1, no.4, pp. 307-326, 2006.
    [22]A. Kordatzakis, K. Perakis, M. Haritou, I. Maglogiannis, and D. Koutsouris, “A novel telematics platform for remote monitoring of patients,” The Journal on Information Technology in Healthcare, vol. 5, no. 4, pp. 248-254, 2007.
    [23]P. S. Freedson, E. Melanson, and J. Sirard, “Calibration of the computer science and applications, Inc. accelerometer,” Medicine & Science in Sports & Exercise, vol. 30, no. 5, pp. 777-781, 1998.
    [24]D. Hendelman, K. C. Baggett, E. Debold, and P. Freedson, “Validity of accelerometry for the assessment of moderate intensity physical activity in the field,” Medicine & Science in Sports & Exercise, vol. 32, no. 9, pp. S442-S449, 2000.
    [25]C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A triaxial accelerometer and portable data processing unit for assessment the assessment of daily physical activity,” IEEE Trans. Biomedical Engineering, vol. 44, no. 3, pp. 136-147, 1997.
    [26]freescale, http://www.freescale.com/files/sensors/doc/data_sheet/MMA7455L.pdf
    [27]MXIC, http://www.mxic.com.tw/QuickPlace/hq/Main.nsf/h_Toc/5c179475fbb1d010482574440028bdf4/?OpenDocument
    [28]CSR, http://www.csr.com/home.php
    [29]Nordic, http://www.nordicsemi.com/
    [30]B. Weber, I. Hermanns, R. Ellegast, and J. Kleinert, “A person-centered measurement system for quantification of physical activity and energy expenditure at workplaces,” Ergonomics and Health Aspects, vol. 5624, pp. 121-130, 2009.
    [31]G. Jean-Louis, D. F. Kripke, W. J. Mason, J. A. Elliott, and S. D. Youngstedt, “Sleep estimation from wrist movement quantified by different actigraphic modalities,” Journal of Neuroscience Methods, vol. 105, no. 2, pp. 185-191. 2001.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE