研究生: |
林新皓 Lin, Hsin-Hao |
---|---|
論文名稱: |
毫米波CMOS可調式混合變壓器射頻收發機雙工放大器與V-/W-band功率放大器之研製 Design of Millimeter-wave CMOS Tunable Hybrid-transformer-based RF Transceiver Duplexer Amplifiers and V- /W-band Power Amplifier |
指導教授: |
莊惠如
Chuang, Huey-Ru |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | V-band 、W-band 、CMOS 、毫米波功率放大器 、低雜訊放大器 、射頻收發開關 |
外文關鍵詞: | CMOS, Millimeter-Wave (MMW), V-band, W-band, Duplexer, Low-noise amplifier (LNA), Neutrolization, Power amplifier (PA) |
相關次數: | 點閱:66 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製CMOS毫米波可調式混合變壓器射頻收發機雙工放大器、 使用中和技術之二路變壓器功率結合之V-band堆疊式功率放大器、及94-GHz 結合發射開關之射頻收發前端電路,設計皆採用TSMC 90-nm GUTM CMOS製程; (1) 可調式混合變壓器之射頻收發機雙工放大器: 功率放大器採用二路變壓器功率結合,低雜訊放大器則採用串接三級疊接架構實現,雙工器藉由變壓器之中央點操作於奇偶模態,訊號會有不同之特性去實現一收發電路。(2) 使用中和技術之二路變壓器功率結合之V-band CMOS堆疊式功率放大器: 除了利用電晶體堆疊來提升輸出功率,且在輸出端作功率結合使功率進一步提升,又使用中和技術(neutralization)去提升整體穩定度表現。(3) 94-GHz CMOS射頻收發機之結合發射開關前端電路: 功率放大器電路使用疊接式架構達到較高增益,採用A類之偏壓來達成較佳之線性度及功率增益,並將射頻開關融合於輸出阻抗之中。低雜訊放大器採用疊接組態且串接五級電路,前兩級電路間加入雜訊匹配電感以達最佳化雜訊之功用 ;接收端(Rx)的射頻接收開關電路主體採用行進波概念,達到寬頻響應和高隔離度特性,並搭配基極浮接與負基極偏壓技術改善插入損耗與線性度。晶片電路設計以Agilent ADS及全波電磁模擬軟體進行模擬,量測皆採用on-wafer方式。
This thesis presents the research on CMOS millimeter-wave CMOS tunable hybrid-transformer-based RF transceiver duplexer amplifiers and V-/W-band power amplifiers (PAs), fabricated by standard TSMC 90-nm GUTM CMOS process. In the MMW RF transceiver duplexer amplifiers, the PA consists of two-stage class-A cascode structure amplifier for linearity and power gain consideration. The low noise amplifier (LNA) also consists of three-stage cascode structure amplifier for gain performance. Two-way transformer combiner (?) is designed for consideration of PA output power and isolation. The balun is also utilized for emhancement of isolation performance. In the V-band CMOS power amplifier design, the stacked structure with using inter-node matching network is employed. The performance of power gain and power added efficiency (PAE) is significantly improved by inter-node matching technique. Furthermore, the neutrolization technique is used to improve the stability and gain performance. In the 94-GHz CMOS RF transceiver, a high-gain W-band PA is designed to integrate with two T/R switches and a LNA. In the design of the PA, a five-stage common-source (CS) cascade structure with gain-boosting technique is adopted for the performance of the power gain, 3-dB gain bandwidth, and gain flatness. In order to achieve a higher output power and gain performance in Tx mode, the modified output matching network is designed by combining the switch and output matching network, which can enhance the Tx output power and gain performance. On-wafer measurement is performaned for the designed MMW RFICs. Simulation and measurement results are compared and discussed.
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online].
Available: http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online].
Available: http://www.ieee802.org/15
[4] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, no.1, pp. 237–246, Jan. 2008.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no.12, pp. 2667–2681, Dec. 2010.
[6] J. R. Long, "Monolithic transformers for silicon RF IC design," in IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[7] Charles. K. Alexander, Matthew. N. O. Sadiku, Fundamentals of Electric Circuits, 6rd ed., McGraw-Hill Higher Education, 2009.
[8] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer- a new power-combining and impedance-transformation technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan 2002.
[9] M. Danesh, J. R. Long, R. A. Hadaway and D. L. Harame, "A Q-factor enhancement technique for MMIC inductors," 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 1998, pp. 183-186 vol.1.
[10] J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos and J. Bausells, "Improvement of the quality factor of RF integrated inductors by layout optimization," in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 76-83, Jan 2000.
[11] C. C. Lim et al., "Fully Symmetrical Monolithic Transformer (True 1 : 1) for Silicon RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2301-2311, Oct. 2008.
[12] E. Cohen, C. Jakobson, S. Ravid and D. Ritter, "A bidirectional TX/RX four element phased-array at 60GHz with RF-IF conversion block in 90nm CMOS process," 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, 2009, pp. 207-210.
[13] P. Wu, T. Kijsanayotin and J. F. Buckwalter, "A 71–86-GHz Switchless Asymmetric Bidirectional Transceiver in a 90-nm SiGe BiCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4262-4273, Dec. 2016.
[14] M. Cho, J. Kim and D. Baek, "A Switchless CMOS Bi-Directional Distributed Gain Amplifier With Multi-Octave Bandwidth," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 611-613, Nov. 2013.
[15] J. F. Yeh, J. H. Tsai and T. W. Huang, "A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1280-1290, March 2013.
[16] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti and F. Svelto, "A 40–67 GHz Power Amplifier With 13 dBm${
m P}_{
m SAT}$and 16% PAE in 28 nm CMOS LP," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1618-1628, July 2015.
[17] C. Chou, Y. Hsiao, Y. Wu, Y. Lin, C. Wu and H. Wang, "Design of a $V$ -Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[18] Y. Hsieh, J. Kuo, H. Wang and L. Lu, "A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612, Nov. 2011.
[19] D. Fritsche, G. Tretter, C. Carta and F. Ellinger, "Millimeter-Wave Low-Noise Amplifier Design in 28-nm Low-Power Digital CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp. 1910-1922, June 2015.
[20] A. Medra, D. Guermandi, K. Vaesen, Q. Shi, P. Wambacq and V. Giannini, "An 80-GHz low noise amplifier resilient to the TX-spillover in phase-modulated continuous-wave radars," 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, 2015, pp. 323-326.
[21] Y. Kim and Y. Kwon, "Analysis and Design of Millimeter-Wave Power Amplifier Using Stacked-FET Structure," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 691-702, Feb. 2015.
[22] H. T. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[23] H. Asada, K. Matsushita, K. Bunsen, K. Okada and A. Matsuzawa, "A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE," 2011 41st European Microwave Conference, Manchester, 2011, pp. 1115-1118.
[24] J. Rollett, "Stability and Power-Gain Invariants of Linear Twoports," in IRE Transactions on Circuit Theory, vol. 9, no. 1, pp. 29-32, March 1962.
[25] C. Lin, C. Yu, H. Kuo and H. Chuang, "Design of 60-GHz 90-nm CMOS balanced power amplifier with miniaturized quadrature hybrids," 2014 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), Newport Beach, CA, 2014, pp. 52-54.
[26] Po-Han Chiang, Wei-Heng Lin, Tzu-Yuan Huang and H. Wang, "A 53 to 84 GHz CMOS power amplifier with 10.8-dBm output power and 31 GHz 3-dB bandwidth," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-3.
[27] J. Kuo, Z. Tsai, K. Lin and H. Wang, "A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 45-47, Jan. 2009.
[28] H. Hsieh and L. Lu, "A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-$mu{hbox{m}}$ CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
[29] D. A. Chan and M. Feng, "A Compact W-Band CMOS Power Amplifier With Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 98-100, Feb. 2011.
[30] Y. Jiang, Z. Tsai, J. Tsai, H. Chen and H. Wang, "A 86 to 108 GHz Amplifier in 90 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 124-126, Feb. 2008.
[31] N. Deferm, J. F. Osorio, A. de Graauw and P. Reynaert, "A 94GHz differential power amplifier in 45nm LP CMOS," 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 2011, pp. 1-4.
[32] B. Heydari, M. Bohsali, E. Adabi and A. M. Niknejad, "Low-Power mm-Wave Components up to 104GHz in 90nm CMOS," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 200-597.
[33] C. Liao, C. Hsieh, R. Hu, D. Niu and Y. Shiao, "W-band 90nm CMOS LNA design," 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, 2012, pp. 430-432.
[34] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Norwood, MA: Artech House, 2006.
[35] 邱煥凱,射頻功率放大器設計講義,經濟部工業局半導體學院計畫短期國家晶片系統設計中心短期專業訓練課程,民國一百年。
[36] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華科技,2008。
[37] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, Inc., 1998.
[38] 郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一零一年。
[39] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[40] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[41] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[42] Guillermo Gonzalez, Microwave transistor amplifiers: analysis and design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996
[43] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 562-636.
[44] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005
[45] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1129–1132.
[46] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008.
[47] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[48] 李子瑋,CMOS毫米波功率放大器及94-GHz CMOS次諧波單混頻器射頻收發機之整合晶片設計研究,民國一百零五年。
[49] 朱嗣堯,整合GIPD之60-GHz 四路結合功率放大器與V-及W-band之毫米波功率放大器研製,民國一百零六年。
[50] Edwin H. Colpitts, “System for the transmission of intelligence,” U.S. Patent 1 137 384, April, 27, 1915.
[51] P. C. Hsu, C. Nguyen and M. Kintis, "Uniplanar broad-band push-pull FET amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 12, pp. 2150-2152, Dec 1997.
[52] S. Toyoda, "Push-pull power amplifiers in the X band," 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 1997, pp. 1433-1436 vol.3.
[53] Z. Wang, "Wideband class AB (push-pull) current amplifier in CMOS technology," in Electronics Letters, vol. 26, no. 8, pp. 543-545, 14 April 1990.
[54] R. Ramachandran, S. Moghe, J. Girimaji and A. Podell, "6 to 18 GHz single-ended and push-pull MMIC amplifiers for high-gain modules," IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers., New York, NY, USA, 1988, pp. 15-18.
[55] M. Chongcheawchamnan, K. S. Ang, J. N. H. Wong and I. D. Robertson, "A Push-Pull Power Amplifier Using Novel Impedance-Transforming Baluns," 2000 30th European Microwave Conference, Paris, France, 2000, pp. 1-4.
[56] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[57] K. H. An, Ockgoo Lee, Hyungwook Kim, Dong Ho Lee, Jeonghu Han, Ki Seok Yang, Joy Laskar, et al."Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[58] Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1365-1374, May 2012.
[59] Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu, Yi-Lin Lee, Tian-Wei Huang and Huei Wang, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2487-2496, June 2006.
[60] Kyounghoon Yang, G. I. Haddad and J. R. East, "High-efficiency class-A power amplifiers with a dual-bias-control scheme," in IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1426-1432, Aug. 1999.