簡易檢索 / 詳目顯示

研究生: 許凱翔
Hsu, Kai-Siang
論文名稱: 金屬-氧化物式化學感測器之研製
Fabrication of Metal-Oxide Type Chemical Sensors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 178
中文關鍵詞: 延伸式閘極離子感測場效電晶體氧化鎳酸鹼感測器氣體感測器
外文關鍵詞: EGFET, NiO, pH sensor, Gas sensor
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,生物感測器之成長與應用已蓬勃發展於各個領域,例如醫藥與健康、化工領域、食品工業以及環境監測等;有鑑於此,本論文係利用射頻濺鍍法製備氧化鎳感測膜,應用於離子感測電極上,並結合金屬-氧化物-半導體場效電晶體以形成氧化鎳酸鹼離子延伸式閘極場效電晶體,取代傳統之閘極離子感測場電晶體,其具製作簡便、價格低廉之特性,可朝拋棄式感測器發展,提高在臨床醫療之實用性。緊接著,將感測元件置於不同酸鹼溶液中,藉由半導體參數分析儀測量感測元件之電流-電壓特性曲線,以探討不同濺鍍參數和沉積後高溫退火下氧化鎳感測薄膜對於酸鹼離子的感測特性。實驗結果顯示氧化鎳薄膜具有良好之氫離子感測度,且線性度佳,可應用於酸鹼離子檢測。為了與氧化鎳感測薄膜作比較,氧化銦錫及氧化鋅材料之酸鹼感測特性也將進行一系列之探討與分析。
    接著再以原子力顯微鏡,X光薄膜繞射分析儀,化學分析電子光譜儀,掃瞄式電子顯微鏡等,進行薄膜結構之分析。
    最後,利用黃光微影及熱蒸鍍技術沉積指叉狀電極於藍寶石基板上並結合氧化鎳感測薄膜,以製備電阻式氣體感測器。由實驗結果可知,氧化鎳材料具備檢測氨氣和氫氣的能力。尤其在高溫時,元件呈現更短的響應時間及更高的感測靈敏度。

    In recent years, the development and application of biosensors have expanded in various fields such as medicine, chemical, food industry and environmental monitoring. In this study, the nickel oxide thin films were fabricated by radio frequency (RF) magnetron sputtering technology to be applied in the ion sensing electrode. Also, the thin film structure was connected with metal-oxide-semiconductor field-effect transistors (MOSFETs) to transform the EGFET (extended gate field-effect transistors). Due to the advantages of low-cost, facile process and simple extended-gate structure, the ion-sensitive field effect transistors (ISFETs) would be replaced by EGFET. Moreover, the separative structure is suitable for the applications on disposable pH sensors and clinical medicines. Afterwards, the semiconductor parameter analyzer system was utilized to measure the current-voltage (I-V) curves. Besides, the sensing properties of NiO pH-EGFETs under different sputtering conditions and post-deposition annealing temperatures were also investigated. Experimentally, NiO EGFETs possess the excellent pH sensitivity and linearity, indicating that the NiO EGFETs gives a promise for high-performance pH sensing applications. Finally, in order to understand pH sensing characteristics of semiconducting material, the ITO and ZnO materials would be discussed and analyzed.
    By a series of atomic force microscope (AFM), x-ray diffraction (XRD), electron spectroscope for chemical analysis (ESCA), and scanning electron microscope (SEM) measurements, the compositions and structures of thin films can be obtained.
    Finally, the conventional photolithography and thermal evaporation were employed to fabricate the interdigitated electrodes on the sapphire substrates. The NiO membrane have successfully been deposited on the substrate to form the NiO-based chemiresistor-type gas sensors. Experimentally, NiO materials show the sensing response not only to ammonia gas but also to hydrogen gas. The studieddevice also exhibits the short response time and high sensitivity at high temperatures.

    Abstract Table Captions Figure Captions Chapter 1 Introduction 1.1 Introduction to semiconductor pH sensors.............1 1.2 Site-binding model...................................2 1.3 Introduction to gas sensors..........................4 1.4 Gas sensing mechanism................................5 1.4.1 Ammonia sensing mechanism..........................5 1.4.2 Hydrogen sensing mechanism.........................6 1.5 Summary..............................................6 Chapter 2 Experimental Details 2.1 Fabrication of Extended-Gate Field Effect Transistors (EGFETs).................................................8 2.1.1 Preparation of device substrate....................8 2.1.2 Fabrication of pH sensing electrode................8 2.2 Fabrication of NiO-based gas sensor..................10 2.2.1 Device substrate...................................11 2.2.2 Preparation of device substrate....................11 2.2.3 Electrode deposition...............................11 2.2.4 NiO sensing layer deposition.......................11 2.3 Sensing measurement..................................12 2.3.1 pH sensing measurement setup.......................12 2.3.2 Gas sensing measurement setup......................12 2.4 Material analyses....................................13 2.4.1 X-ray photoelectron spectroscopy (XPS).............13 2.4.2 X-ray diffraction (XRD)............................14 2.4.3 Atomic force microscopy (AFM)......................14 2.4.4 Scanning electron microscopy (SEM).................15 Chapter 3 pH sensing characteristics of extended-gate field effect transistor based on metal oxide thin films 3.1 Introduction.........................................16 3.2 Device fabrication...................................19 3.2.1 Packaging process..................................19 3.2.2 Current-voltage (I-V) measurement system...........20 3.3 pH sensing characteristics of NiO-based EGFETs.......20 3.3.1 Sensitivity with different Ar/O2 flow ratios.......21 3.3.2 Sensitivity with different annealing temperatures..23 3.3.3 Sensitivity with different sputtering powers.......25 3.3.4 Sensitivity with different films thickness.........26 3.3.5 Sensitivity with different sensing area............27 3.3.6 Material analyses..................................28 3.3.7 Temperature effect.................................30 3.3.8 Drift effect.......................................30 3.3.9 Hysteresis effect..................................31 3.3.10 Interferences.....................................31 3.3.11 Lifetime..........................................31 3.4 pH sensing characteristics of ITO-based EGFETs.......32 3.4.1 Sensitivity with different Ar/O2 flow ratios.......32 3.4.2 Sensitivity with different annealing temperatures..34 3.4.3 Sensitivity with different sputtering substrate temperatures.............................................36 3.4.4 Sensitivity with different films thickness.........37 3.4.5 Sensitivity with different sensing area............38 3.4.6 Temperature effect.................................39 3.4.7 Lifetime...........................................39 3.5 pH sensing characteristics of ZnO-based EGFETs.......40 3.6 Summary..............................................40 Chapter 4 Hydrogen and ammonia gas sensing properties of NiO-based thin films 4.1 Introduction.........................................42 4.2 Device fabrication...................................43 4.3 Results and discussion...............................44 4.4 Summary..............................................47 Chapter 5 Conclusion and prospects 5.1 Conclusion...........................................48 5.2 Prospect.............................................48 References...............................................51

    1. A. Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode,” Sens. Actuator B, vol. 88, no. 3, pp. 234-238, Feb. 2003.
    2. P. Shuk and K.V. Ramanujachary, “New metal-oxide-type pH sensors,” Solid State Ion., vol. 86-88, no. 2, pp. 1115-1120, Jul. 1996.
    3. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, no. 1, pp. 70-71, Jan. 1970.
    4. B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor with silicon nitride gate for pH sensing,” INT. J. Electronics, vol. 67, no. 1, pp. 59-63, 1989.
    5. K. Chen, G. Li, H. Lu, and L. Chen, “Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET,” Sens. Actuator B, vol. 12, no. 1, pp. 23-27, Mar. 1993.
    6. H. Abe, M. Esashi, and T. Matsuo, “ISFETs using inorganic gate thin-films,” IEEE Trans. Electron Devices, vol. 26, no. 12, pp. 1939-1944, Dec. 1979.
    7. M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique,” Sens. Actuator B, vol. 35, no. 1-3, pp. 228-233, Sep. 1996.
    8. J. C. Chou and J. L Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing,” Sens. Actuator B, vol. 62, no. 2, pp. 81-87, Feb. 2000.
    9. J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B, vol. 76, no. 1-3, pp. 624-628, Jun. 2001.
    10. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs,” Sens. Actuators B, vol. 7, no. 1-3, pp. 367-370, Mar. 1992.
    11. H. Hara and T. Ohta, “Dynamic response of a Ta2O5 -gate pH-sensitive field-effect transistor,” Sens. Actuator B, vol. 32, pp. 115-119, 1996.
    12. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, no.1, pp. 19-23, Feb. 2000.
    13. H. K. Liao, “Study of tin oxide as a sensing film for ISFET applications,” Dissertation of Ph.D., Chung Yuan Christian University, September, 1998.
    14. P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuator B, vol. 88, no. 1, pp. 1-20, 2003.
    15. R. M. Cohen, R. J. Huber, J. Janata, R. W. Ure, and S. D. Moss, “Study of the insulator materials used in ISFET gates,” Thin solid films, vol. 53, no. 2, pp. 169-173, 1978.
    16. J. Van der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuator B, vol. 4, pp. 291-298, 1983.
    17. H. Ecken, S. Ingebrandt, M. Krause, D. Richter, M. Hara, and A. Offenhausser, “64-Channel extened gate electrode arrays for extracellular signal recording,” Electrochim. Acta, vol. 48, no. 20-22, pp. 3355-3362, Sep. 2003.
    18. J. C. Chen, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sens. Actuator B, vol. 91, no. 1-3, pp. 180-186, Jun. 2003.
    19. L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Mater. Chem. Phys., vol. 70, no. 1, pp. 12-16, Apr. 2001.
    20. J. C. Chou, J. L. Chiang, and C. L. Wu, “pH and Procaine Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Indium Tin Oxide Glass,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 4838-4832, Jul. 2005.
    21. D. E. Yates, S. Levine, and T. W. Healy, “Site-binding Model of the Electrical Double Layer at the Oxide/ Water Interface,” J. Chem. Soc. Fraday Trans., vol. 1, no. 70, pp. 1807-1818, 1974.
    22. C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field effect transistor,” IEEE Trans. on electron devices, vol. ED-33, no. 1, pp. 8-18, Jan. 1986.
    23. P. D. Batista, M. Mulato, C. F. de O. Graeff, F. J. R. Fernandez, and F. das C. Marques, “SnO2 Extended Gate Field-Effect Transistor as pH Sensor,” Braz. J. Phys., vol. 36, no. 2A, pp. 478-481, Jun. 2006.
    24. P. D. Batista, and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143508 - 143508-3, Oct. 2005.
    25. J. C. Chou and Y. F. Wang, “Preparation of the SnO2 Gate pH-Sensitive Ion Sensitive Field-Effect Transistor by the Sol-Gel Technology and Its Temperature Effect,” Jpn. J. Appl. Phys., vol. 41, no. 10, pp. 5941-5944, Oct. 2002.
    26. J. C. Chou, P. K. Kwan, and Z. J. Chen, “SnO2 separative structure extended gate H+- ion sensitive field effect transistor by the sol-gel technology and the readout circuit developed by source follower,” Jpn. J. Appl. Phys., vol. 42, no. 11, pp. 6790-6794, 2003.
    27. P. Antognetti and G. Massobrio, “Semiconductor Device Modeling with SPICE,” 1988.
    28. J. L. Chiang, Y. C. Chen, and J. C. Chou, “Simulation and Experimental Study of the pH-Sensing Property for AlN Thin Films,” Jpn. J. Appl. Phys., vol. 40, no. 10, pp. 5900-5904, Oct. 2001.
    29. L. Tien, P. Sadik, D. Norton, L. Voss, S. Pearton, H. Wang, B. Kang, F. Ren, J. Jun, and J. Lin, “Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods,” Appl. Phys. Lett., vol. 87, no. 22, pp. 222106 - 222106-3, Nov. 2005.
    30. T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuator A, vol. 136, no. 1, pp. 244-248, May 2007.
    31. N. Ali, M. Hashim, and A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron., vol. 52, no. 7, pp. 1071-1074, Jul. 2008.
    32. Y. Tsai, K. Lin, H. Chen, and I. Liu, “Transient response of a transistor-based hydrogen sensor,” Sens. Actuator B, vol. 134, no. 2, pp. 750-754, Sep. 2008.
    33. X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT,” Microelectron. J., vol. 39, no. 1, pp. 20-23, Jan. 2008.
    34. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, “Porous silicon layers used for gas sensor applications,” Thin Solid Films, vol. 297, no. 1-2, pp. 317-320, Apr. 1997.
    35. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, and N. Murayama, “Planar catalytic combustor film for thermoelectric hydrogen sensor,” Sens. Actuator B, vol. 108, no. 1-2, pp. 455-460, Jul. 2005.
    36. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, and N. Murayama, “Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sens. Actuator B, vol. 108, no. 1-2, pp. 973-978, Jul. 2005.
    37. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24 Ga0.76 As high-electron-mobility transistor,” Appl. Phys. Lett, vol. 86, no. 11, pp. 112103 - 112103-3, Mar. 2005.
    38. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B, vol. 85, no. 1-2, pp. 10-18, Jan. 2002.
    39. P. Ripka, J. Kubik, M. Duffy, W. G. Hurley, and S. O’Reilly, “Current sensor in PCB technology,” Proc. IEEE, vol. 2, pp. 779-784, 2002.
    40. P. Tobias, A. Baranzahi, A. Spetz, O. Kordina, E. Janzen, and I. Lundstrom, “Fast chemical sensing with metal-insulator silicon carbidestructures,” IEEE Electron Device Lett., Vol. 18, no. 6, pp. 287-289, 1997.
    41. K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” 1997.
    42. P. Moseley, “Solid state gas sensors,” Meas. Sci. technol., vol. 8, pp. 223-237, 1997.
    43. N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE T. Compon. Pack. A, vol. 18, no. 2, pp. 252-256, Jun. 1995.
    44. A. Mandelis and C. Christofides, “Physics, chemistry, and technology of solid state gas sensor devices,” 1993.
    45. S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultrasensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 825-835, May. 1992.
    46. W. Gopel, “New materials and transducers for chemical sensors,” Sens. Actuator B, vol. 18, no. 1-3, pp. 1-21, Mar. 1994.
    47. C. Christofides and A. Mandelis, “Solid state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, no. 6, pp. R1-R30, May. 1990.
    48. G. J. Maclay, W. J. Buttner, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, no. 6, pp. 793-799, Jun. 1988.
    49. S. R. Morrison, “Semiconductor gas sensors,” Sens. Actuator B, vol.2, pp. 329-341, 1982.
    50. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 5, pp. 1900-1903, Jan. 2007.
    51. O. Lupan, G. Chai, and L. Chow, “Novel hydrogen gas sensor based on single ZnO nanorod,” Microelectron. Eng., vol. 85, no. 11, pp. 2220-2225, Nov. 2008.
    52. N. Zhang, K. Yu, L. Li, and Z. Zhu, “Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod,” Appl. Surf. Sci., vol. 254, no. 18, pp. 5736-5740, Nov. 2008.
    53. O. Lupan, G. Chai, and L. Chow, “Fabrication of ZnO nanorod-based hydrogen gas nanosensor,” Microelectron. J., vol. 38, no. 12, pp. 1211-1216, Dec. 2007.
    54. I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, and V. Rehacek, “Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification,” Sens. Actuator B, vol. 103, no. 1-2, pp. 300-311, Sep. 2004.
    55. I. Hotovy, J. Huran, L. Spiess, H. Romanus, D. Buc, and R. Kosiba, “NiO-based nanostructured thin films with Pt surface modification for gas detection,” Thin Solid Films, vol. 515, no. 2, pp. 658-661, Oct. 2006.
    56. D. Buso, M. Guglielmi, A. Martucci, C. Cantalini, M. L. Post, and A. Haché, “Porous sol gel silica films doped with crystalline NiO nanoparticles for gas sensing applications,” J. Sol-Gel Sci. Technol., vol. 40, no. 2.3, pp. 299-308, Aug. 2006.
    57. J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 2, pp. 596-600, Dec. 2006.
    58. J. Wang, X. Sun, Y. Yang, H. Huang, Y. Lee, O. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, no. 19, pp. 4995-4998, Oct. 2006.
    59. J. M. Hollander and W. L. Jolly, “X-ray Photoelectron Spectroscopy,” Acc. Chem. Res., vol. 3, no. 6, pp. 193-200, Jun. 1970.
    60. G. Bauer and W. Richter, “Optical characterization of epitaxial semiconductor layers,” Springer Berlin, 1996.
    61. W. Zachariasen and E. Hill, “The Theory of X-ray Diffraction in Crystals,” J. Phys. Chem., vol. 50, no. 3, pp. 289-290, Mar. 1946.
    62. G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, Mar. 1986.
    63. T. J. Marrie and J. W. Costerton, “Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters,” J. Clin. Microbiol., vol.19 , no. 5, pp. 687-693, May 1984.
    64. Y. Miao, J. Chen, and K. Fang, “New technology for the detection of pH,” J. Biochem. Biophys. Methods, vol. 63, no. 1, pp. 1-9, Apr. 2005.
    65. J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no. 5, pp. 753-756, May 2010.
    66. S. K. Wixson, W. J. White, H. C. Jr Hughes, C. M. Lang, and W. K. Marshall, “The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats,” Lab Anim Sci., vol. 37, no. 6, pp. 736-742, Dec. 1987.
    67. B. J. C. Deboux, E. Lewis, P. J. Scully, and R. Edwards, “A novel technique for optical fibre pH sensing based on methylene blue adsorption,” J. Lightwave Technol., vol. 13, no. 7, pp. 1407-1414, Jul. 1995.
    68. C. Ruan, K. Zeng, and C. A. Grimes, “A mass-sensitive pH sensor based on a stimuli–responsive polymer,” Anal. Chim. Acta, vol. 497, no. 1-2, pp. 123-131, Nov. 2003.
    69. S. Yao, M. Wang, and M. Madou, “A pH electrode based on melt-oxidized iridium oxide,” J. Electrochem. Soc., vol. 148, no. 4, pp. 29-36, Apr. 2001.
    70. A. Talaie, J. Y. Lee, Y. K. Lee, J. Jang, J. A. Romagnoli, T. Taguchi, and E. Maeder, “Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices,” Thin Solid Films, vol. 363, no. 1-2, pp. 163-166, Mar. 2000.
    71. W. S. Han, M. Y. Park, D. H. Cho, T. K. Hong, D. H. Lee, and J. M. Park, “the behavior of a poly(aniline) solid contact pH selective electrode based on N, N, N’, N’-tetrabenzylethanediamine ionophore,” Anal Sci., vol. 17, no. 6, pp. 727-732, Apr. 2001.
    72. R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Micromechanical cantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3091-3093, Oct. 2002.
    73. M. J. Schoning, A. Simonis, C. Ruge, H. Ecken, M. Muller-Veggian, and H. Luth, ” A (bio-)chemical field-effect sensor with macroporous Si as substrate material and a SiO2 /LPCVD–Si3N4 double layer as pH transducer,” Sensors, vol. 2, pp. 11-22, Jan. 2002.
    74. S. Nomura, Y. Kitasako, N. Hiraishi, M. Nakajima, and T. Nikaido, “Application of semiconductor pH-imaging sensor to the imaging of extracted human carious dentin,” Anal. Sci., vol. 17, pp. 539-541, Oct. 2001.
    75. H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sens. Actuators B, vol. 65, no. 1-3, pp. 23-25, Jun. 2000.
    76. C. S. Lai, C. E. Lue, C. M. Yang, and D. G. Pijanowska, ” Fluorine Incorporation and Thermal Treatment on Single and Stacked Si3N4 Membranes for ISFET/REFET Application,” J. Electrochem. Soc., vol. 157, no. 1, pp. J8-J12, 2010.
    77. S. S. Jan, Y. C. Chen, J. C. Chou, P. J. Jan, and C. C. Cheng, “Preparation and properties of hydrogen ion-sensitive field effect transistors with sol–gel-derived Mg-modified lead titanate gate,” J. Non-Cryst. Solids, vol. 332, no. 1-3, pp. 11-19, Dec. 2003.
    78. A. N. Mansour, “Characterization of NiO by XPS,” Surf. Sci. Spectra, vol. 3, no. 3, pp. 231-238, Jul. 1994.
    79. W. A. W. A. Bakar, M. Y. Othman, R. Ali, and C. K. Yong, “Nickel Oxide Based Supported Catalysts for the In-situ Reactions of Methanation and Desulfurization in the Removal of Sour Gases from Simulated Natural Gas,” Catal. Lett., vol. 128, no. 1-2, pp. 127-136, 2009.
    80. J. Liu and Y. Zuo, “Crystallization and Conductivity Mechanism of ITO Films on Different Substrates Deposited with Different Substrate Temperatures,” J. Wuhan Univ. Technol.-Mat. Sci. Edit., vol. 25, no. 5, pp. 753-759, Oct. 2010.
    81. P. K. Biswas, A. De, L. K. Dua, and L. Chkoda, “Surface characterization of sol-gel derived indium tin oxide films on glass,” Bull. Mat. Sci., vol. 29, no. 3, pp. 323-330, Jun. 2006.
    82. J. C. Chou and C. W. Chen, “Fabrication and Application of Ruthenium-Doped Titanium Dioxide Films as Electrode Material for Ion-Sensitive Extended-Gate FETs,” IEEE Sens. J., vol. 9, no. 3, pp. 277-284, Mar. 2009.
    83. J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no.5, pp. 753-756, May 2010.
    84. E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method,” Solid State Sci., vol. 11, no. 2, pp. 456-460, Feb. 2009.
    85. Y. H. Liao and J. C. Chou, “Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors,” Sensors, vol. 9, no. 4, pp. 2478-2490, Apr. 2009.
    86. J. L. Chiang, S. S. Jhan, S. C. Hsieh, and A. L. Huang, “Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system,” Thin Solid Films, vol. 517, no. 17, pp. 4805-4809, Jul. 2009.
    87. E. J. Guidelli, E. M. Guerra, and M. Mulato, “Ion sensing properties of vanadium/tungsten mixed oxides,” Mater. Chem. Phys., vol. 125, no. 3, pp. 833-837, Feb. 2011.
    88. P. D. Batista and M. Mulato, “Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor,” J. Mater. Sci., vol. 45, no. 20, pp. 5478-5481, May 2010.
    89. Y. H. Liao and J. C. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method,” Mater. Chem. Phys., vol. 114, no. 2-3, pp. 542-548, 2009.
    90. J. C. Chou, S. I. Liu, and S. H. Chen, “Sensing Characteristics of Ruthenium Films Fabricated by Radio Frequency Sputtering,” Jpn. J. Appl. Phys., vol. 44, no. 3, pp. 1403-1408, Mar. 2005.
    91. J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon Nanowires as pH Sensor,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2626-2629, Apr. 2005.
    92. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, no. 1, pp. 19-23, Feb. 2000.
    93. J. L. Lin, Y. M. Chu, S. H. Hsaio, Y. L. Chin, and T. P. Sun, “Structures of Anodized Aluminum Oxide Extended-Gate Field-Effect Transistors on pH Sensors,” Jpn. J. Appl. Phys., vol. 45, no. 10A, pp. 7999-8004, Oct. 2006.
    94. J. L. Chiang, J. C. Chou, Y. C. Chen, G. S. Liau, and C. C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor,” Jpn. J. Appl. Phys., vol. 42, no. 8, pp. 4973-4977, Aug. 2003.
    95. S. S. Jan, Y. C. Chen, J. C. Chou, C. C. Cheng, and C. T. Lu, ” Preparation and Properties of Lead Titanate Gate Ion-Sensitive Field-Effect Transistors by the Sol–Gel Method,” Jpn. J. Appl. Phys., vol. 41, no. 2A, pp. 942-948, Feb. 2002.
    96. T. M. Pan, M. D. Huang, W. Y. Lin, and M. H. Wu, “ A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte–insulator–semiconductor,” Anal. Chim. Acta, vol. 669, no. 1-2, pp. 68-74, May 2010.
    97. E. Fujii, A. Tomozawa, H. Torii, and R. Takayama, “Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 35, pp. 328-330, Jan. 1996.
    98. H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, no. 1-2, pp. 27-31, Dec. 1993.
    99. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. P. Rao, and V. K. Vaidyan, “Preparation of transparent and semiconducting NiO films,” Vacuum, vol. 68, no. 2, pp. 149-154, Oct. 2002.
    100. P. Puspharajah, S. Radhakrishna, and A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique,” J. Mater. Sci., vol. 32, no. 11, pp. 3001-3006, 1997.
    101. M. Kitao, K, Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamada, “Preparation and electrochromic properties of rf-sputtered NiOx films prepared in Ar/O2/H2 atmosphere,” Jpn. J. Appl. Phys., vol. 33, pp. 6656-6662, Sep. 1994.
    102. K. Yoshimura, T. Miki, and S. Tanemura, “Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering,” Jpn. J. Appl. Phys., vol. 34, pp. 2240-2246, Mar. 1995.
    103. X. P. Zhang and G. P. Chen, “The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures,” Thin Solid Films, vol. 298, no. 1-2, pp. 53-56, Apr. 1997.
    104. X. Yi, W. Wenzhong, Q. Yitai, Y. Li, and Ch. Zhiwen, “Deposition and microstructural characterization of NiO thin films by a spray pyrolysis method,” J. Cryst. Growth, vol. 167, no. 3, pp. 656-659, Oct. 1996.
    105. L. D. Kadam and P. S. Patil, “Studies on electrochromic properties of nickel oxide thin prepared by spray pyrolysis technique,” Sol. Energy Mater. Sol. Cells, vol. 69, no. 4, pp. 361-369, Nov. 2001.
    106. S. Y. Wang, W. Wang, W. Z. Wang, and Y. W. Du, “Preparation and characterization of highly oriented NiO (200) films by a pulse ultrasonic spray pyrolysis method,” Mater. Sci. Eng. B, vol. 90, no. 1-2, pp. 133-137, Mar. 2002.
    107. K. W. Nam, W. S. Yoon, K. B. Kim, “X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors,” Electrochim. Acta, vol. 47, no. 19, pp. 3201-3209, Jul. 2002.
    108. M. Matsumiya, W. Shin, N. Izu, and N. Murayama, “Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor,” Sens. Actuators B, vol. 93, no. 1-3, pp. 309-315, Aug. 2003.
    109. W. Shin, M. Matsumiysa, N. Izu, N. Murayama, “Hydrogen-selective thermoelectric gas sensor,” Sens. Actuators B, vol. 93, no. 1-3, pp. 304-308, Aug. 2003.
    110. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, “Sensing characteristics of NiO thin films as NO2 gas sensor,” Thin Solid Films, vol. 418, no. 1, pp. 9-15, Oct. 2002.
    111. I. Hotovy, J. Huran, J. Janik, and A. P. Kobzev, “Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering,” Vacuum, vol. 51, no. 2, pp. 157-160, Oct. 1998.
    112. J. A. Dirksen, K. Duval, and T. A. Ring, “NiO thin-film formaldehyde gas sensor,” Sens. Actuators B, vol. 80, no. 2, pp. 106-115, Nov. 2001.
    113. N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B, vol. 108, no. 1-2, pp. 2-14, Jul. 2005.
    114. C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, no. 6, pp. 1-30, Sep. 1990.
    115. W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, no. 6, pp. 793-799, Jun. 1988.
    116. S. M. Lee, Y. S. Lee, C. H. Shim, N. J. Choi, B. S. Joo, K. D. Song, J. S. Huh, and D. D. Lee. “Three electrodes gas sensor based on ITO thin film,” Sens. Actuators B, vol. 93, no. 1-3, pp. 31-35, Aug. 2003.
    117. D. Dimova-Malinovska, H. Nichev, V. Georgieva, O. Angelov, J. C. Pivin, and V. Mikli, “Sensitivity of ZnO films doped with Er, Ta and Co to NH3 at room temperature,” Phys. Status Solidi A-Appl. Mat., vol. 205, no. 8, pp. 1993-1997, Aug. 2008.
    118. L. Zhang, F. L. Meng, Y. Chen, J. Y. Liu, Y. F. Sun, T. Luo, M. Q. Li, and J. H. Liu, “A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays,” Sens. Actuators B, vol. 142, no. 1, pp. 204-209, Oct. 2009.
    119. A. Sadek, S. Choopun, W. Wlodarski, S. Ippolito, and K. Kalantar-Zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing,” IEEE Sens. J., vol. 7, no. 6, pp. 919-924, Jun. 2007.
    120. J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “A two-step hydrothermally grown ZnO microtube array for CO gas sensing,” Appl. Phys. A, vol. 88, no. 4, pp. 611-615, Apr. 2007.
    121. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: Near-ideal microstructures for gas sensors,” Adv. Mater., vol. 13, no. 19, pp. 1468-1472, Oct. 2001.
    122. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams, and I. P. Parkin, “A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide,” Sens. Actuators B, vol. 114, no. 2, pp. 969-977, Apr. 2006.
    123. I. D. Kim, A. Rothschild, T. Hyodo, and H. L. Tuller, “Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 films,” Nano Lett., vol. 6, no. 2, pp. 193-198, Jan. 2006.
    124. M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” J. Am. Ceram. Soc., vol. 59, no. 1-2, pp. 4-8, Jan. 1976.

    下載圖示 校內:2016-08-02公開
    校外:2016-08-02公開
    QR CODE