| 研究生: |
劉冠伶 Liu, Kuan-Ling |
|---|---|
| 論文名稱: |
電子封裝之等效分析 Equivalent Analysis of Electronic Packages |
| 指導教授: |
胡潛濱
Hwu, Chyanbin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 電子封裝 、等效 、應力強度因子 |
| 外文關鍵詞: | electronic package, equivalent, stress intensity factor |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因電子封裝之結構測試與破壞性試驗需要花費大量的時間與資源,以及現今電腦效能之進步,所以利用模擬分析來代替傳統試驗已是普遍性的作法,但也因為其結構之複雜性,須耗費時間與高度的電腦效能,導致無法兼顧兩者之效益,如何改善此問題提出有效方法則是本文主要的研究重點。
本論文主內容則是將等效均質概念應用於電子封裝元件上,將複雜結構之封裝體以一均質正向性材料取代,其等效均質概念主要是根據異質材料之平均應力和平均應變理論來決定均質材料之性質,其後則運用整體與子模型概念,局部分析所關切之元件,迅速獲取其位移場及應力場,進一步計算接腳處之應力強度因子,將等效後之模型分析結果與原始模型做一比較分析,探討等效結果之差異度及其效率。
It usually takes a lot of time and resources for the tests of the electronic packages. The simulation by computer is helpful and powerful to analyze the problem we interested. However, the simulation still costs much time of calculation if the structures of packages are complicated. It is very important and necessary to reduce the complexity of the problem; hence, the concept of homogenization is considered in this thesis.
The research focuses on effective properties of the orthotropic materials calculated by the finite element analysis. Using the average stress and strain theorem, it will be equivalent between actual heterogeneous material and substituted homogeneous material. Then the global and sub-modeling approach was employed. The multilevel finite element modeling approach first solves the stress problem for the global structure of interest. Degree-of-freedom solutions calculated from the global analysis are then interpolated into the local model boundaries for the local analysis. Finally, we calculate the stress intensity factors (SIFs) of the interface corner between pin and substrate where we care about. Using this way, we can compare the difference between the result of the equivalent model and the original model and discuss the efficency of the homogenization for electronic packages.
1. ANSYS 10.0 Documentation : ANSYS Element Reference.
2. Aghdam, M.M., Dezhsetan, A., “Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model”, Composite Structures, v71, n3-4, Fifth International Conference on Composite Science a Technology ICCST/5, p327-332, December, 2005.
3. Anonymous, "Dual Ultra Low Power Op Amp in SOT23-8", Micrel, Inc. Product Document of MIC862, September 2004.
4. Anonymous, "Product Selection Guide", YAGEO Corporation, 2006.
5. Christensen, R. M., “Mechanics of Composite Materials”, John-Wiley,New York, 1979.
6. Chiu, T.C., Lin, H.C., “Application of Multiscale Finite Element Analysis for Interface Cracks in Integrated Circuit Devices”, Proceedings of The Seventh International Congress on Thermal Stresses, p147-150, 2007.
7. Carvelli, V., Taliercio, A., “Micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses”, Mechanics Research Communications, v26, n5, p547-553, Sep. 1999.
8. Fiori V., Zhang X., Yan, T.T., “Advanced reliability modeling of Cu/low-k interconnection in FCBGA package”, Proceedings-Electronic Components and Technology Conference, v2006, Proceedings - IEEE 56th Electronic Components and Technology Conference, p964-97, 2006.
9. Ghosh, S., Bai, J., Raghavan, P., “Concurrent multi-level model for damage evolution in microstructurally debonding composites” Mechanics of Materials, v39, n3, p241-266, March 2007.
10. Khisaeva, Z.F., Ostoja-Starzewski, M., “On the size of RVE in finite elasticity of random composites”, Journal of Elasticity, v85, n2, p153-173, November 2006.
11. Kurukuri, S., “Homogenization of Damaged Concrete Meso-structures using Representative Volume Elements-Implementation and Application to SLang”, Institute of Structural Mechanics Graduate School of Structural Engineering Bauhaus–University Weimar Germany, 2005.
12. Kuo, T.L., Hwn, C., “A Domain-Independent H-Integral for Computing Multi-order Stress Intensity Factor of Three-Dimensional Interface Corners”, 2008, prepared for submitting.
13. Sokolnikoff, I.S., “Mathematical Theory of Elasticity”, 2nd Eddition, McGraw Hill, 1956.
14. Sun, C.T., Vaidya, R.S., “Prediction of composite properties from a representative volume element”, Composites Science and Technology, v56, n2, p171-179,1996.
15. Yang, Q.S., Becker, W., “Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions”, Computational Materials Science, v31, n1-2, p169-180, September 2004.
16. Zhao, B., Tay, A.A.O., “RVE hybrid slim sector model for efficient analysis of solder joint reliability” Proceedings-Electronic Components and Technology Conference, v2006, Proceedings-IEEE 56th Electronic Components and Technology Conference, p740-747, 2006.
17. 郭泰良,「界面接角之應力強度因子」,碩士論文,成功大學航空太空工程研究所,2006。
18. 鐘文仁、陳佑任,「IC 封裝製程 CAE 應用」,全華科技,2005。