| 研究生: |
林銘偉 Lin, Ming-Wei |
|---|---|
| 論文名稱: |
有機薄膜/金屬結構界面於高效率高分子發光二極體之研究 Organic/Metal Electrode Interface in Efficienct Polymer Light-Emitting Diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 高分子發光二極體 、聚乙二醇二甲醚 、聚乙烯亞胺 、碳酸銫 、鈣金屬 、界面效應 |
| 外文關鍵詞: | polymer light-emitting diode, poly(ethylene glycol) dimethyl ether, polyethyleneimine, cesium carbonate, calcium, interface properties |
| 相關次數: | 點閱:163 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文專注於提升有機發光二極體元件其載子傳輸效率。探討在陰電極及放光層間的界面修飾層:poly(ethylene glycol) dimethyl ether (PEGDE)、polyethyleneimine (PEI)、cesium carbonate (Cs2CO3)及calcium (Ca)對電子傳導及注入之影響。
在使用有機氧化物PEGDE做為陰電極緩衝層時,可保護主動層不被熱蒸鍍金屬破壞,而PEGDE本身雖為一絕緣材料,但當搭配金屬aluminum (Al)陰極時卻可有效的使元件效率(5.19 cd/A)提升約為以Al單獨做為電極時(0.04 cd/A)的100倍。透夠X光光電子能譜的分析我們發現當PEGDE與Al搭配時其樣品會觀察到Al與C的鍵結,藉由能譜解析我們發現此鍵結為 C-Al或C-O-Al的鍵結,我們推測此一鍵結的產生將有助於電子的注入,亦即表面功函數會降低。除此之外,我們更進一步提出共蒸鍍PEGDE與Al,利用改變共蒸鍍比例以調變所成之膜中C-O-Al鍵 (或C-Al鍵)含量,進而調控功函數並影響電子注入能力。使用另一有機化合物PEI做為陰電極緩衝層時,我們發現不同於PEGDE材料只能在搭配Al時才能有效幫助電子注入,PEI材料在搭配Al、silver (Ag)、gold (Au)陰極時,都能有效誘發電子注入到有機發光層中,搭配Al的元件,效率從0.02 cd/A提升到8.63 cd/A;搭配Ag時,效率從0.16 cd/A提升到7.60 cd/A;搭配Au時,從元件無法運作到效率5.03 cd/A。PEI促使電子注入提升的機制主要為:PEI中的氮官能機在有機發光層及金屬陰電極界面產生界面偶極矩,此界面偶極矩可調變真空能階,提供一較低注入能障供電子傳輸。
在以藍光材料為放光層結構的有機半導體元件中,我們使用Cs2CO3搭配Al作為陰電極結構,將Cs2CO3材料與常用Ca電子注入層比較,Ca在熱蒸鍍過程會擴散入放光層中對放光層造成破壞,此破壞除了會抑制電子傳輸外,亦會使藍光元件在偏壓施加下容易產生額外綠光,反之在使用Cs2CO3時,發現Cs2CO3對放光層幾乎沒有任何破壞產生,相較於Ca的使用,Cs2CO3電極提高了電子傳輸能力及穩定元件在藍光色域的色純度表現,而整體元件最佳化結果效率為14 cd/A,藍光CIE值為(0.15, 0.14)。
高分子發光二極體陰電極與放光層間藉由加入界面修飾層PEGDE、PEI及Cs2CO3都可有效提升電子電洞傳導及注入之能力。
This thesis focus on the design of materials including poly(ethylene glycol) dimethyl ether (PEGDE), cesium carbonate (Cs2CO3), polyethyleneimine (PEI) and calcium (Ca) for the interfacial modification of PLEDs.
In the case of PEGDE, spin-coating or thermally evaporating PEGDE polymer film as a buffer medium on the surface of light-emitting layer with aluminum (Al) cathode significantly improve the electron injection through the Al cathode. We attribute the improved device performance to the interfacial reactions at the ethylene oxide/Al junction, which works as an effective cathode buffer with multiple functions to facilitate the injection of electrons, to prevent the formation of metal-induced electroluminescent (EL) quenching sites, and to confine the excitons in the light emissive layer… etc. Furthermore, by changing the compositions of PEGDE and Al, co-evaporation of PEGDE with Al in vacuum at various ratios, we can fine tune the electron injection capability of cathode to balance the injected charge carriers and achieve the optimal device performance. In the case of PEI, we find that the surface modifiers PEI polymers containing amine groups substantially reduce the work function of metals and significantly improve the electron injection by leading to the formation of interface dipoles. The utilization of PEI/Al, PEI/silver (Ag), and PEI/gold (Au) all can achieve dramatic increased in device performance in comparison to similar polymer light-emitting diodes (PLEDs) without the PEI layer.
We also apply the Cs2CO3/Al cathode in efficient blue-emissive PLEDs, the device has the superior performance and it was due to the non-formation of metal-induced exciton quenching sites when utilization of Cs2CO3 layer. In fact, the exciton quenching often created by the Ca metal. The device of the optimal configuration is highly promising for use in developing deep blue-emissive PLEDs, with the EL emissions centered at 430-450 nm of the Commission Internationale de l’Eclairage chromaticity coordinates (CIE) coordinates, (0.15, 0.14), a maximum brightness of 35054.20 cd/m2, and LE of 14 cd/A (at 2975 cd/m2).
Finally, our results emphasize the importance of interface modification in efficient the electron injection, the case in PEGDE, PEI, and Cs2CO3 all show that the integrity of electrode/organic interfacial contact is crucial to the performance and stability of PLEDs.
Reference
[1] P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, and R. H. Friend, J. Chem. Soc. Chem. Commun. 1, 32 (1992).
[2] P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, and R. W. Gymer, Nature 356, 47 (1992).
[3] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holms, Nature 347, 539 (1990).
[4] A. R. Brown, D. D. C. Bradley, P. L. Burn, J. H. Burroughes, R. H. Friend, N. Greenham, A. B. Holmes, and A. Kraft, Appl. Phys. Lett. 61, 2793 (1992).
[5] G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mat. 4, 36 (1992).
[6] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys. 30, L1941 (1991).
[7] Y. Ohmori, C. Morishima, M. Uchida, and K. Yoshino, Jpn. J. Appl. Phys. 31, L568 (1992).
[8] D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, J. Appl. Phys. 72, 564 (1992).
[9] D. Braun, and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
[10] H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, and H. Bassler, Adv. Mat. 4, 661 (1992).
[11] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992).
[12] C. Zhang, S. Hőger, K. Pakbaz, F. Wudl, and A. J. Heeger, J. Electron. Mat. 22, 413 (1993).
[13] A. Bernanose, M. Comte, and P. Vouaux, J. Chim. Phys. 50, 65 (1953).
[14] M. Pope, J. Chem. Phys. 38, 2043 (1963).
[15] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[16] Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. 10, 917 (1998)
[17] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L269 (1987).
[18] C. W. Tang, Appl. Phys. Lett. 48, 183 (1985).
[19] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J. Appl. Phys. 32, L514 (1993).
[20] L. S. Hung, C. W. Tang, and M. G. Mason, App. Phys. Letts. 70, 152 (1997).
[21] P .H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, App. Phys. Lett. 77, 2403 (2000).
[22] I. D. Parker, Y. Cao, and C. Y. Yang, J. Appl. Phys. 85, 2441 (1999).
[23] F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, M. S. Liu, and A. K.-Y. Jen, Adv. Mater. 19, 2010 (2007).
[24] F. Huang, Y. Zhang, M. S. Liu, Y. J. Cheng, and A. K.-Y. Jen, Adv. Funct. Mater. 17, 3808 (2007).
[25] P. Piromerium, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, Appl. Phys. Lett. 77, 2403 (2000).
[26] J. Brondijk, X. Li, H. Akkerman, P. Blom, and B. de Boer, Appl. Phys. A: Mater. Sci. Process 95, 1 (2009).
[27] W. Chen, C. Huang, X. Y. Gao, L. Wang, C. G. Zhen, D. Qi, S. Chen, H. L. Zhang, K. P. Loh, Z. K. Chen, and A. T. S. Wee, J. Phys. Chem. B 110, 26075 (2006).
[28] W. A. Hartman, and H. L. Armstrong, J. Appl. Phys. 38, 2393 (1967).
[29] J. Gu, M. Kawabe, K. Masuda, and S. Namba, J. Appl. Phys. 48, 2493 (1977).
[30] S. Miyata, and H. S. Nalwa, Editors, Organic Electroluminescent Materials and Devices, (Gordon and Breach Publishers, Overseas Publishers Association, Amsterdam, 1997).
[31] Z. H. Kafafi, Editor, Organic Light-Emitting Materials and Devices, SPIE Proc. 3148, (SPIE- The International Society for Optical Engineering, Belingham, WA, 1997).
[32] Z. H. Kafafi, Editor, Organic Light-Emitting Materials and Devices Ⅲ, SPIE Proc. 3797, (SPIE- The International Society for Optical Engineering, Belingham, WA, 1997).
[33] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 55, 1489 (1989).
[34] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
[35] N. Tessler, N. T. Harrison, and R. H. Friend, Adv. Mat. 10, 64 (1998).
[36] N. Tessler, Adv. Mat. 11, 363 (1999).
[37] J. H. Schön, S. Berg, Ch. Kloc, and B. Batlogg, Science 287, 1022 (2000).
[38] M. Raikh, and X. Wei, Mol. Cryst. Liq. Cryst. 256, 563 (1994).
[39] A. Miller, and E. Abrahams, Phys. Rev. 120, 7455 (1960).
[40] S. V. Frolov, M. Leiss, P. A. Lane, W. Gellerman, and Z. V. Vardeny, Phys. Rev. Lett. 78, 4285 (1997).
[41] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, Appl. Phys. Lett. 71, 228 (1997).
[42] S. Karg, V. Dyakonov, M. Reier, W. Reiss, and G. Paasch, Synth. Met. 67, 165 (1994).
[43] S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, and T. Tsutsui, Synth. Met. 111, 331 (2000).
[44] B. J. Chen, W. Y. Lai, Z. Q. Cao, C. S. Lee, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 75, 4010 (1999).
[45] A. J. Campbell, D. D. C. Bradlev, H. Antoniadis, M. Inbasekaran, W. W. Wu, and E. P. Woo, Appl. Phys. Lett. 76, 1734 (2000).
[46] E. W. Forsythe, M. A. Abkowitz, Y. Cao, and C. W. Tang, J. Vac. Sci. & Tech. A18, 1869 (2000).
[47] H. Meyer, D. Haarer, H. Naarmann, and H. H. Horhold, Phys. Rev. B 52, 2587 (1995).
[48] E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, and W. Brutting, Appl. Phys. Lett. 71, 2686 (1997).
[49] P. M. Boresenberger, L. Pautimeier, and H. Bässler, J. Chem. Phys. 95, 1258 (1991).
[50] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).
[51] W. Brutting, E. Lebedev, S. Karg, T. Dittrich, V. Petrova-Koch, and M. Schwoerer, SPIE 3281, 251 (1998).
[52] N. Camaioni, G. Casalbore-Miceli, A. Geri, and S. Nicoletti, Adv. Mater. 11, 472 (1999).
[53] M. Dongge, I. A. Hummelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, 3181 (1999).
[54] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, R656 (1997).
[55] H. A. Mizes, and E. M. Conwell, Phys. Rev. Lett. 70, 1505 (1993).
[56] E. M. Conwell, Phys. Rev. B 57, R12670 (1998).
[57] T. Blum, and H. Bässler, Chem. Phys. 123, 431 (1988).
[58] D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
[59] Yu. N. Gartstein, and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
[60] D. H. Dumlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
[61] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).
[62] S. W. DeLeeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London A 373, 27 (1989).
[63] S. V. Novikov, and A. V. Vannikov, JETP 79, 482 (1994).
[64] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bassler, J. Appl. Phys. 84, 848 (1998).
[65] P. S. Davids, Sh. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270 (1996).
[66] Yu. N. Gartstein, and E. M. Conwell, Chem. Phys. Lett. 255, 93 (1996).
[67] E. M. Conwell, and M. W. Wu, Appl. Phys. Lett. 70, 1867 (1997).
[68] V. N. Savvate'ev, and Z. Ovadyahu, "Slow Relaxation in a Fermi Glass," in Hopping and Related Phenomena: Proceedings of the 6th International Conference on Hopping and Related Phenomena, edited by O. Millo and Z. Ovadyahu, p.44 (1995).
[69] M. A. Lampert, and P. Mark, Current Injection in Solids, (Academic Press, NY, 1970).
[70] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
[71] P. S. Davids, I. H. Campbell, and D. Smith, J. Appl. Phys. 82, 6319 (1997).
[72] D. Ma, I. Hummelgen, B. Hu, and F. E. Karasz, J. Phys. D: Appl. Phys. 32, 2568 (1999).
[73] M. Koehler, and I. A. Hummelgen, J. Appl. Phys. 87, 3074 (2000).
[74] P. W. M. Blom, M. J. M. de Jong, and S. Breedijk, Appl. Phys. Lett. 71, 930 (1997).
[75] S. Berleb, W. Brutting, and M. Schwoerer, J. Appl. Phys. 83, 4403 (1998).
[76] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Lett. 84, 833 (1998).
[77] J. Staudigel, M. Stössel, and J. Simmerer, J. Appl. Phys. 85, 3895 (1999).
[78] M. G. Harrison, J. Gruner, and G. C. W. Spencer, Syn. Met. 76, 71 (1996).
[79] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
[80] M. Meier, S. Karg, and W. Reiss, J. Appl. Phys. 82, 1961 (1997).
[81] H. C. F. Martens, H. B. Brom, and P. W. M. Blom, Phys. Rev. B 60, R8489 (1999).
[82] A. Ioannidis, E. Forsythe, Yongli Cao, M. W. Wu, and E. M. Conwell, Appl. Phys. Lett. 72, 3038 (1998).
[83] J. Staudigel, M. Stössel, F. Steuber, and J. Simmerer, J. Appl. Phys. 86, 3895 (1999).
[84] M. Matsumura, A. Ito, and Y. Miyamae, Appl. Phys. Lett. 75, 1042 (1999).
[85] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals, Oxford University Press, New York, 1982.
[86] T. Yonezawa, T. Nagata, H. Kato, A. Imamura, and K. Morokuma, Introduction of Quantum Chemistry, Kagaku-Dojin, Japan, 1983.
[87] N. J. Turro, Molecular Photochemistry, Benjamin, San Francisco 1965.
[88] G. Gu, D. Z. Garbuzpv, P. E. Burrows, S. Venkatesh, S. R. Forest, and M. E. Thompson, Opt. Lett. 22, 396 (1997).
[89] T. Tsutsui, and S. Saito, in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordrecht 1993, p. 123.
[90] C. Adachi, T. Tsutsui, and S. Saito, Optoelectron: Device Technol. 6, 25 (1991).
[91] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, 531 (1990).
[92] T. Tsutsui, E. Aminaka, and S. Saito, J. Appl. Phys. 79, 8808 (1996).
[93] C. P. Lin, T. Tsutsui, and S. Saito, J. Polym. Res. 2, 133 (1995).
[94] J. Littman, and P. Martic, J. Appl. Phys. 72, 1957 (1992).
[95] J. G. C. Veinot, and T. J. Marks, Acc. Chem. Res. 38, 632 (2005).
[96] G. Hughes, and M. R. Bryce, J. Mater. Chem. 15, 94 (2005).
[97] A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004).
[98] F. Huang, Y. J. Cheng, Y. Zhang, M. S. Liu, and A. K.-Y Jen, J. Mater. Chem. 18, 4495 (2008).
[99] N. Koch, J. Phys: Condens. Matter 20, 184008 (2008).
[100] H. L. Skriver, and N. M. Rosengaard, Phys. Rev. B 46, 7157 (1992).
[101] H. B. Michaelson, J. Appl. Phys. 48, 4729 (1997).
[102] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
[103] S. Hüfner, Photoelectron Spectroscopy (Berlin: Springer) (1995).
[104] J. Birgerson, M. Fahlman, P. Broms, and W. R. Salaneck, Synth. Met. 80, 125 (1996).
[105] W. R. Salaneck, and J. L. Bredas, Adv. Mater. 8, 48 (1996).
[106] V. E. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Cao, Appl. Phys. Lett. 71, 1005 (1997).
[107] V. E. Choong, Y. Park, Y. Cao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, Vac. Sci. Technol. A 15, 1745 (1997).
[108] V. E. Choong, Y. Park, Y. Cao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, Appl. Phys. Lett. 69, 1492 (1996).
[109] F. Li, H. Tang, J. Anderegg, and J. Shinar, App. Phys. Lett. 70, 1233 (1997).
[110] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
[111] F. Huang, H. B. Wu, J. B. Peng, W. Yang, and Y. Cao, Curr. Org. Chem. 11, 1207 (2007).
[112] S. H. Oh, S. I. Na, Y. C. Nah, D. Vak, S. S. Kim, and D. Y. Kim, Org. Electron. 8, 773 (2007).
[113] H. P. Wang, P. Lu, B. L. Wang, S. Qiu, M. R. Liu, M. Hanif, G. Cheng, S. Y. Liu, and Y. G. Ma, Macromol. Rapid Commun. 28, 1645 (2007).
[114] G. Zhou, Y. H. Geng, Y. X. Cheng, Z. Y. Xie, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 89, 233501 (2006).
[115] W. J. Zeng, H. B. Wu, C. Zhang, F. Huang, J. B. Peng, W. Yang, and Y. Cao, Adv. Mater. 19, 810 (2007).
[116] H. B. Wu, F. Huang, Y. Q. Mo, W. Yang, D. L. Wang, J. B. Peng, and Y. Cao, Adv. Mater. 16, 1826 (2004).
[117] F. Huang, L. T. Hou, H. B. Wu, X. H. Wang, H. L. Shen, W. Cao, W. Yang, and Y. Cao, J. Am. Chem. Soc. 126, 9845 (2004).
[118] W. L. Ma, P. K. Iyer, X. Gong, and G. C. Bazan, J. Am. Chem. Soc. 128, 14422 (2006).
[119] B. W. D'Andrade, and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
[120] X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. 84, 3522 (2004).
[121] A. J. Campbell, D. D. C. Bradley, and H. Antoniadis, Appl. Phys. Lett. 79, 2133 (2001).
[122] J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, and Y. C. Kim, Appl. Phys. Lett. 84, 1783 (2004).
[123] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, and Y. S. Fu, Appl. Phys. Lett. 87, 013504 (2005).
[124] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, and C. T. Chung, Appl. Phys. Lett. 88, 113501 (2006).
[125] T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung, and C. I. Wu, Appl. Phys. Lett. 89, 051103 (2006).
[126] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, C. I. Wu, and C. T. Chung, Appl. Phys. Lett. 89, 053507 (2006).
[127] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
[128] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
[129] J. Huang, Z. Xu, and Y. Yang, Adv. Funct. Mater. 17, 1966 (2007).
[130] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Bredas, M. Logdund, and W. R. Salancek, Nature 397, 121 (1999).
[131] L. Akcelrud, Prog. Polym. Sci. 28, 975 (2003).
[132] S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
[133] L. Yan, N. J. Watkins, S. Zorba, Y. Cao, and C. W. Tang, Appl. Phys. Lett.81, 2752 (2008).
[134] X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J. L. Brédas, J. Am. Chem. Soc. 124, 8131 (2002).
[135] Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 80, 2782 (2002).
[136] Y. H. Niu, H. Ma, Q. Xu, and A. K.-Y. Jen, App. Phys. Lett. 86, 083504 (2005).
[137] A. R. B. M. Yusoff, W. J. da Silva, J. P. M. Serbena, M. S. Meruvia, and I. A. Hümmelgen, Appl. Phys. Lett. 94, 253305 (2009).
[138] C. C .Wang, and G. H. Hsiue, J. Polym. Sci. Part A 31, 2601 (1993).
[139] M. Atreya, S. Li, E. T. Kang, K. G. Neoh, and K. L. Tan, Polym. Degrad. Dtab. 63, 53 (1999).
[140] N. Dam, M. M. Beerbom, J. C. Braunagel, and R. Schlaf, J. Appl. Phys. 97, 024909 (2005).
[141] R. Sutcliffe, W. W. Lee, J. F. Gaynor, J. D. Luttmer, D. Martini, J. Kelber, and M. A. Plano, Appl. Surf. Sci. 126, 43 (1998).
[142] J. Y. Jeng, M. W. Lin, Y. J. Hsu, T. C. Wen, and T. F. Guo, Adv. Mater.1, 1192 (2011).
[143] P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature 404, 481 (2000).
[144] Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. 83, 4695 (2003).
[145] A. Yusoff, Z. Hassan, and H. Abu Hassan, Appl. Phys. Lett. 88, 242109 (2006).
[146] S. Cros, M. Firon, S. Lenfant, P. Trouslard, and L. Beck, Nucl.Instrum. Methods Phys. Res., Sect. B, 251, 257 (2006).
[147] X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, and S. S. Xiao, Adv. Funct. Mater. 13, 325 (2003).
[148] L. M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010).
[149] M. Granström, and O. Inganäs, Appl. Phys. Lett. 68, 147 (1996).
[150] G. Tu, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, and F. Wang, Appl. Phys. Lett. 85, 2172 (2004).
[151] S. K. Lee, D. H. Hwang, B. J. Jung, N. S. Cho, J. Lee, J. D. Lee, and H. K. Shim, Adv. Funct. Mater. 15, 1647 (2005).
[152] C. Y. Chuang, P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, Macromolecules 40, 247 (2007).
[153] C. H. Kuo, W. K. Cheng, K. R. Lin, M. K. Leung, and K. H. Hsieh, J. Polym. Sci. Part A: Polym. Chem. 45, 4504 (2007).
[154] E. J. W. List, R. Guentner, P. S. de Freitas, and U. Scherf, Adv. Mater. 14, 374 (2002).
[155] M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Funct. Mater. 19, 2130 (2009).
[156] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, Appl. Phys. Lett. 73, 629 (1998).
[157] M. Cross, D. C. Müller, H. G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, and K. Meerholz, Nature 405, 661 (2000).
[158] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 73, 2453 (1998).
[159] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 73, 1565 (1998).
[160] E. Zojer, A. Pogantsch, E. Hennebicq, D. Beljonne, J. L. Brédas, P. S. de Freitas, U. Scherf, and E. J. W. List, J. Chem. Phys. H, 6794 (2002).
[161] L. M. Herz, and R. T. Phillips, Phys. Rev. B 61, 13691 (2000).
[162] T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M. Bastiaansen, and B. M. W. Langeveld-Voss, Adv. Funct. Mater. 14, 677 (2004).
[163] T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater. 13, 565 (2001).
[164] M. C. Hung, J. L. Liao, S. A. Chen, S. H. Chen, and A. C. Su, J. Am. Chem. Soc. 127, 14576 (2005).
[165] E. Wang, C. Li, Y. Mo, Y. Zhang, G. Ma, W. Shi, J. Peng, W. Yang, and Y. Cao, J. Mater. Chem. 16, 4133 (2006).
[166] R. T. Chen, S. H. Chen, B. Y. Hsieh, and Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 47, 2821 (2009).
[167] W. F. Su, R. T. Chen, and Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 49, 352 (2011).
[168] W. L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, Appl. Phys. Lett. 75, 3270 (1999).
[169] Y. He, S. Gong, R. Hattori, and J. Kanicki, Appl. Phys. Lett. 74, 2265 (1999).
[170] G. Kiaerner, M. H. Davey, W. D. Chen, J. C. Scott, and R. D. Miller, Adv. Mater. 10, 993 (1998).
[171] S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, and G. Leising, J. Am. Chem. Soc. 123, 946 (2001).
[172] S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. B. Wu, D. Moses, and A. J. Heeger, Adv. Funct. Mater. 13, 25 (2003).
[173] H. H. Lu, C. Y. Liu, T. H. Jen, J. L. Liao, H. E. Tseng, C. W. Huang, M. C. Hung, and S. A. Chen, Macromolecules 38, 10829 (2005).
[174] B. J. Chen, X. W. Sun, K. S. Wong, and X. Hu, Opt. Express 13, 26 (2005).
[175] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
[176] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
[177] J. Yoon, J. J. Kim, T. W. Lee, and O. O. Park, Appl. Phys. Lett. 76, 2152 (2000).
[178] S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei, and T. C. Wen, J. Mater. Chem. 21, 8715 (2011).
[179] T. W. Lee, O. O. Park, L. M. Do, T. Zyung, T. Ahn, and H. K. Shim, J. Appl. Phys. 90, 2128 (2001).
[180] C. G. Bazuin, and A. Eisenberg, Ind. Eng. Chem. Prod. Res. Dev. 20, 271 (1981).
[181] M. W. Lin, T. C. Wen, Y. J. Hsu, and T. F. Guo, J. Mater. Chem. 21, 18840 (2011).
[182] H. Ma, H. L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
[183] S. H. Oh, D. Vak, S. I. Na, T. W. Lee, and D. Y. Kim, Adv. Mater. 20, 1624 (2008).
[184] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, and F. Cacialli, J. Appl. Phys. 93, 6159 (2003).
[185] Y. E. Kim, H. Park, and J. J. Kim, Appl. Phys. Lett. 69, 599 (1996).
[186] I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 71, 3528 (1997).
[187] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. W. Samuel, A. P. Monkman, and M. C. Petty, J. Phys. D 33, 1029 (2000).
[188] S. Wu, S. Han, Y. Zheng, H. Zheng, N. Liu, L. Wang, Y. Cao, and J. Wang, Org. Electron. 12, 504 (2011).
[189] J. S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, Appl. Phys. Lett. 87, 023506 (2005).
[190] R. Q. Png, P. J. Chia, S. Sivaramakrishnan, L. Y. Wong, M. Zhou, L. L. Chua, and P. K. H. Ho, Appl. Phys. Lett. 91, 013511 (2007).
[191] A. van Dijken, A. Perro, E. A. Meulenkamp, and K. Brunner, Org. Electron. 4, 131 (2003).