簡易檢索 / 詳目顯示

研究生: 蔡佳育
Tsai, Chia-Yu
論文名稱: 二維楔型拍擊水面之數值模擬研究
Numerical Simulation of 2-D Wedge Impact on Water
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 楔型體船艏入水衝擊
外文關鍵詞: Bow, Wedge, Entrance Impact
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代貨櫃船為達高運載量需求,均在船艏與船艉水線上之容積持續加大,在一方面符合水線下低阻力之考量,另一方面達到水線上容積增加需求。此船型在高速行駛時,船舶與波浪間之相互運動將引發極大的衝擊作用,其衝擊力將可能導致船艏船艉變形。本研究之乃是使用數值模擬與模型試驗的方式探討楔型體衝擊水面的問題,針對楔形體與自由液面接觸後自由液面之變形、不同楔形角度其水下流場變化與楔型體的動量變化。
    文中發現楔型體之加速度會隨著楔型角度的增加而減小,入水後水下流場呈現放射狀向外傳遞,加速度高峰值在楔型體入水後發生,並且在自由液面出現噴流後產生第二次大的峰值。當模擬落下高度越來越高時,其入水後最大壓力也將越來越高,但我們注意到過程中最大壓力值的部份,並不能確定每次其發生的正確位置。

    Modern container ship is required with a higher load, such that the volume of bow and stern is increase below the waterline. It satisfies the low drag under the waterline and the volume increasing above the waterline. When this type of ship navigates at high speed, the influence of motion between ship and wave will generate huge impact on bow structure which may deform the hull. This research studied a wedge which impacts on the water by using numerical simulation and model test, aiming at the deformation of free-surface after contact, and the flow characteristic and dynamic variation for different dead rise angle of the wedge.
    It is found that the acceleration will be decreasing with the increasing of dead rise angle; and the flow field appears a radiation pattern from the wedge; the peak of acceleration arises after the wedge into the water, and the second peak will appear after the spray on the surface. When the drop height is higher, the pressure on the wedge is higher also. But we can’t anticipate the highest pressure on certain position in one process.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 IX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 4 第二章 研究理論 5 2.1 基本假設 5 2.2 動力理論 6 2.3 因次分析 8 2.4 模型設計與研究條件 10 第三章 實驗方法 12 3.1 實驗設備 12 3.2 實驗儀器 13 3.2.1 質點影像測速儀之原理與元件 13 3.2.2 加速度規之原理與元件 14 3.2.3 儀器校正與誤差 14 3.3 模型製作 17 第四章 模擬方法 18 4.1 統御方程式 18 4.2 離散方程式 20 4.3 演算法 24 4.4 數值模型建構與邊界條件 25 4.5 參數設定 26 4.6 模擬正確性 27 4.6.1 圓柱流場 28 4.6.2 正弦波自由震盪流場 35 4.6.3 二維楔型自由掉落模擬 36 第五章 模擬結果與實驗比較 40 5.1 各條件下之動力特性 40 5.2 各條件下流場計算結果 47 5.3 流場模擬之流體體積 78 5.4 各條件下之壓力分佈 82 第六章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 91

    Chuang Sheng-Lun, “Slamming tests of three-dimentional
    models in clam water and waves”, Naval Ship Research and Development Center, Report 4095, 1973.

    Dobrovol’skaya Z. N., “On some problems of similarity flow of fluid and a free surface”, J. Fluid Mech., Vol.36, part 4, pp.805-829, 1969.

    Davis, M. R.; Whelan, J. R., “Computation of Wet Deck Bow Slam Loads for Catamaran Arched Cross Sections”, Ocean Engineering, Vol. 34, pp.2265-2276, 2007.

    Dennis, S. C. R.; Chang G. Z., “Numerical solution for steady flow past a circular cylinder at Reynolds numbers up to 100”, J. Fluid Mech., Vol.42, pp.471, 1970

    Engle, A.; Lewis, R., “A comparison of hydrodynamic impacts prediction methods with two dimensional drop test data”, Marine Structures, Vol.16, pp.175-182, 2003.

    Fairlie-Clarke, A. C.; Tveitnes, T., “Momentum and Gravity Effects During the Constant Velocity Water Entry of Wedge-Shaped Sections”, Ocean Engineering, Vol.35, pp.706-716, 2008.

    Fornberg, B., “A numerical study of steady viscous flow past a circular cylinder”, J. Fluid Mech., Vol.98, pp.819, 1980

    Mei Xiaoming; Liu Yuming; Yue Dick K. P., “On the water impact of general two-dimensional sections”, Applied Ocean Research, Vol.21, pp.1-15, 1999.

    Mittal, R.; Balachandar, S., “Inclusion of three-dimensional effects in simulations of two-dimensional bluff-body wake flows”, ASME Fluids Engineering Division Summer Meeting, 1997

    Sun Hui; Faltinsen, O. M., “The Influence of Gravity on the Performance of Planning Vessels in Clam Water”, Journal of Engineering Mathematics, Vol. 58, pp.91-107, 2007.

    Tritton, D. J., “Experiments on the flow past a circular cylinder at low Reynolds number”, J. Fluid Mech., Vol.6, pp.547, 1959

    Von Karman Th., “The impact on seaplane floats during landing”, National advisory committee for aeronautics, Technical note No. 321, 1929.

    Wang, J. P.; Brothwick, A. G. L.; Eatock Taylor, R., “Finite-volume type VOF method on dynamic adaptive quadtree grids”, International Journal for Numerical Methods in Fluids, Vol.45, Issue 5, pp.485-508,2004

    Wieselsberger, C., “New Data on the Laws of Fluid Resistance”, NACA TN 84, 1922

    Williamson, C. H. K., “Vortex dynamics in the cylinder wake”, Ann. Rev. Fluid Mech., Vol.28, pp.477, 1996

    Wu, G. X.; Sun, H.; He, Y. S., “Numerical simulation and experimental study of water entry of a wedge in free fall motion”, Journal of Fluids and Structures, Vol.19, pp.277-289, 2004.

    Yang, S. H.; Lee, H. H.; Park, T. H.; Lee, I. H.; Lee, Y. W., “Experimental and Numerical Study on the Water Entry of Symmetric Wedges and a Stern Section of Modern Containership”, 10th International Symposium on Practical Design of Ships and Other Floating Structures, Houston, USA, 2007.

    Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W., “An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries”, J. Computational Physics, Vol.156, pp.209, 1999

    Yettou, E. M.; Desrochers, A.; Champoux, Y., “Experimental study on the water impact of a symmetrical wedge”, Fluid Dynamics Research, Vol.38, pp.47-66, 2006.

    Zhao R.; Faltinsen O., “Water entry of two-dimensional bodies”, J. Fluid Mech., Vol.246, pp.593-612, 1993.

    下載圖示 校內:立即公開
    校外:2009-08-17公開
    QR CODE