| 研究生: |
陳建閔 Chen, Chien-Min |
|---|---|
| 論文名稱: |
排艙與整櫃最佳化網路模式 An Optimization Model for the Container Loading and Re-Marshalling Problem |
| 指導教授: |
李宇欣
Lee, Yusin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 最佳化 、網路 、排艙 、整櫃 、整數規劃 |
| 外文關鍵詞: | optimization, network, integer program, ship planning |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
航運運輸領域中,貨物的往來仰賴貨櫃裝載並由貨櫃船輸送。因此,運務人員系統化地運作貨櫃裝、卸船步驟,並提昇作業效率,此即航運領域中的重要一環。本研究併同考慮貨櫃的裝船動作與場中的整櫃作業,設計一套模擬貨櫃運送的數學模式。
數學模式的建立與求解過程,首先由網路的型態呈現貨櫃場、船舶的儲位空間與各項碼頭機具(包括軌道式門型機、橋式起重機、貨櫃拖車等)的作業方法,並以流量表示貨櫃在各區域與機具間的移動。爾後再以線性數學式描述流量守恆限制與流量流動規則,藉此模擬排艙與整櫃作業的進行。並以最小化整櫃次數為目標,運用線性規劃方法,將限制式與目標函數委由套裝軟體CPLEX 6.0計算。再依據所求得的結果,後處理成為作業步驟流程。
網路模式中假設各項機具移櫃一次所耗時間均相同,待移櫃完成,貨櫃場與船舶中的儲位空間又復歸靜止,由此衍生時間離散的假設,每個時間點均表示一貨櫃儲區靜止狀態。又因必須監控每只貨櫃在各時間點所在位置,即運用多元商品流動問題的觀念,將不同編號之貨櫃視為在網路中流動的不同類商品,每只貨櫃均有所屬的單一網路層,由此將排艙與整櫃問題建構為多元商品的時空網路結構。
本研究所建立之數學模式為一整數規劃問題,可利用分支定限法進行求解。然而測試例規模逐漸擴大時,即因問題規模超越個人電腦的記憶體負荷而無法求解。論文中以數個小規模測試例驗證模式的正確性,均符合流量流動規則的要求。
The efficiency of the containership’s loading and unloading process plays an important role in the container terminal working. This paper is concerned with the container pre-marshalling operation and the loading plan. We design a mathematical model to simulate the shifting of containers.
In this research we use a network based optimization model to present terminal space and the operation of rail cranes, quay cranes, and internal trucks. Flow in the network corresponds to container movements from one slot to another. We use linear constraints to represent the conservation of flow and certain rules about flow works. The optimization objective is to minimize the number of reshuffles. Because the objective function and constraints are linear, one can use CPLEX to solve the model and than infer the planning flowchart according to decision variables values.
In this model we assume that all equipments spend the same amount of time to re-positioning a container, and all equipments move in sync. As a result, containers are assumed to be stationary at every discrete time point. The model regards each container as a different flow commodity in the network, and the network model is a multi-commodity, time-space network.
The resulting model is an integer program that can be solved by any standard algorithm such as branch and bound. However, for instances that are close to real terminal in size, the model cannot be solved in a personal computer. Smaller scale computation examples are presented in the thesis to demonstrate the correctness of the model.
1. Ambrosino, D., Sciomachen, A. and Tanfani, E., “Stowing a containership: the master bay plan problem,” Transportation Research Part A 38, pp.81-99, 2003.
2. Avriel, M., Penn, M. and Shpirer, N., “Container ship stowage problem: complexity and connection to the coloring of circle graphs,” Discrete Applied Mathematics 103, pp.271-279, 1997.
3. Kim, K. Y. and Kim, K. H., “A routing algorithm for a single straddle carrier to load export containers onto a containership,” Int, J. Production Economics 59, pp.425-433, 1999.
4. Kim, K. Y. and Kim, K. H., “A routing Algorithm for a Single Transfer Crane to Load Export Containers onto a Containership,” Computers ind. Engng Vol.33, Nos 3-4, pp.673-676, 1997.
5. Kim, K. H., Bae, J.W., “ Re-marshalling Export Containers in Port Container Terminals,” Computers and Industry Engineering 1998; 35:655-658.
6. Kim, K. H., Park, Y. M., Ryu, K., “Deriving Decision Rules to Locate Export Containers in Container Yards,” European Journal of Operational Research 2000; 124:89-101.
7. Kim, K.H., “Evaluation of the Number of Rehandles in Container Yards,” Computers and Industry Engineering 1997; 32:701-711.
8. Kozan, E., “Optimizing Container Transfers at Multimodal Terminals,” Mathematical andComputer Modelling 2000; 31:235-243.
9. Imai, A., Sasaki, K., Nishimura, E. and Papadimitriou, S., “Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks,” European Journal of Operational Research 171, pp.373-389, 2006.
10. Lee, Y. and Hsu, N., “An optimization model for the container pre-marshalling problem,” Computer & Operations Research, pp.1-19, 2006.
11. Lee, Y. and Chen, C., “An Optimization Heuristic for the Berth Scheduling Problem,” NCKU, working paper, 2006.
12. Steenken, D., Vob, S. and stahlbock, R., “Container terminal operation and operations research – a classification and literature review,” OR Spectrum 26, pp.3-49, 2004.
13. Vis, F.A. and Koster, R. D., “Transshipment of containers at a container terminal: An overview,” European Journal of Operational Reserarch 147, pp.1-16, 2003.
14. Wilson, I. D., Roach, P. A. and Warc, J. A., “Container stowage pre-planning: using search to generate solutions, a case study,” Knowledge-Based Systems 14, pp.137-145, 2001.
15. Yun, W.Y., Choi, Y., “A Simulation Model for Container-Terminal Operation Analysis Using an Object-Oriented Approach,” International Journal of Production Economics 1999.
16. Zhang, C., Liu, J., Wan, Y., Murty, K. G. and Linn, R. J., “Storage space allocation in container terminals,” Transportation Research B 2003; 37:883-903.
17. 許乃云,「貨櫃儲區整櫃之最佳化網路模式」,國立成功大學土木工程學研究所碩士論文,民國91年。
18. 宋建宏,「貨櫃儲區整櫃問題之啟發式解法」,國立成功大學土木工程學研究所碩士論文,民國93年。
19. http://www.evergreen-marine.com
20. http://www.hit.com.hk
21. http://www.khb.gov.tw/