簡易檢索 / 詳目顯示

研究生: 謝其庭
Hsieh, Chi-Ting
論文名稱: Epstein-Barr病毒再活化時Rta下調組蛋白甲基轉移酶的表現
Epstein-Barr virus Rta downregulates a histone methyltransferase during viral reactivation
指導教授: 張堯
Chang, Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 63
中文關鍵詞: EB病毒Rta組蛋白甲基轉移酶EB病毒再活化
外文關鍵詞: EBV, Rta, histone methyltransferase, EBV reactivation
相關次數: 點閱:88下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Epstein-Barr (EB)病毒以潛伏(latent)且無病症的狀態終生感染全球超過90%的人口,然而病毒由潛伏感染再活化進入裂解(lytic)感染時,常伴隨發生包括癌症在內的疾病。過去文獻指出:人類B細胞中的組蛋白甲基轉移酶(histone methyltransferases)可透過表基因體(epigenetic)調控的方式抑制EB病毒裂解期基因的表現,藉此維持病毒潛伏感染。然而一旦EB病毒發生再活化,它要如何抵抗細胞內表基因體抑制的狀態,目前還不清楚。本研究中,我們發現當EB病毒再活化時,細胞中有一些組蛋白甲基轉移酶的表現明顯下降,其中一種H3K9組蛋白甲基轉移酶(suppressor of variegation 3-9 homolog 1, SUV39H1)的表現會被EB病毒裂解期轉活化因子Rta所抑制。蛋白酶體(proteosome)抑制劑MG132會阻止Rta對SUV39H1蛋白質表現的抑制,說明蛋白酶體降解參與在此機制當中。當大量表現SUV39H1或以MG132回復SUV39H1表現時,Rta啟動病毒裂解期基因表現的情形會明顯降低,暗示降解SUV39H1對於Rta有效率地促進病毒再活化是重要的。為了探究Rta對表基因體調控的影響,我們以CRISPR/Cas9技術製造剔除Rta基因的重組EB病毒,並發展選殖單株重組病毒的策略。本研究將揭露EB病毒再活化時主動影響表基因體調控的獨特角色,有助於釐清表基因體調控策略應用於治療EB病毒相關疾病的潛力。

    Epstein-Barr virus (EBV) establishes life-long latent infection in more than 90% of human population without symptom, while viral reactivation into the lytic cycle is associated with some diseases including cancers. Previous studies revealed that cellular histone methyltransferases (HMTs) maintain EBV latency in B cells through epigenetic repression of viral lytic gene expression. Nevertheless, upon EBV reactivation, how the virus counteracts the epigenetic repression state remains unclear. In this study we found that the viral lytic infection was associated with reduction of several histone methyltransferases, and that suppressor of variegation 3-9 homolog 1 (SUV39H1), a methyltransferase of histone H3 lysine 9, was downregulated by ectopic expression of a viral lytic transactivator Rta. The Rta-mediated SUV39H1 downregulation was impeded by treatment with a proteosome inhibitor MG132, indicating that the underlying mechanism involves proteasomal degradation. Meanwhile, Rta-induced viral lytic gene expression was significantly reduced when SUV39H1 was overexpressed or recovered by MG132 treatment, suggesting that downregulation of SUV39H1 is important for efficient Rta-driven EBV reactivation. To further investigate the effects of Rta on epigenetic regulation, we generated recombinant Rta-knockout EBV by using a modified clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system, and have developed a strategy to isolate the recombinant viral clones with expected gene modification. This study will identify a novel active role of EBV in epigenetic control during viral reactivation, shedding light on the therapeutic potential of epigenetic intervention for EBV-associated diseases.

    中文摘要 I Abstract II Acknowledgment III Contents IV Figure list VI Abbreviations VII Introduction 1 Epstein-Barr virus 1 EBV life cycle: latency and the lytic cycle 2 EBV lytic transactivator Rta 5 EBV-associated human diseases 6 Histone modifications and gene regulation 8 Histone H3 lysine 9 histone methyltransferases SUV39H1 10 Histone methylation and EBV gene expression 11 CRISPR system 11 Research rationale 12 Materials and methods 13 Cell culture, drug treatment and induction of EBV reactivation 13 Plasmid DNA 13 Preparation of plasmid DNA 14 Transient plasmid DNA transfection 15 Immunoblotting assay 15 RNA extraction 16 cDNA synthesis 17 Quantitative RT-PCR 17 Cellular DNA extraction for PCR reaction 18 High-resolution melting analysis (HRMA) 19 SURVEYOR assay 20 TA cloning and Sanger sequencing 20 Results 22 Lytic EBV infection downregulates H3K9 HMTs. 22 Rta downregulates SUV39H1 through proteasome degradation. 22 SUV39H1 reduces Rta-driven lytic gene expression. 23 Rta-knockout recombinant EBV is generated by using the CRISPR/Cas9 system. 24 Rta is required for downregulation of SUV39H1. 26 Discussion 27 Interaction between SUV39H1 and EBV infection 27 The possible mechanisms of Rta to downregulate SUV39H1 27 The significance of EBV-mediated downregulation of HMTs during viral reactivation 29 The application of epi-pharmaceuticals to control DNA viruses 31 Applications of the CRISPR/Cas9 system to gene editing of DNA viruses 32 References 35 Figures 51

    Aagaard, L., M. Schmid, P. Warburton and T. Jenuwein (2000). Mitotic phosphorylation of SUV39H1, a novel component of active centromeres, coincides with transient accumulation at mammalian centromeres. J. Cell Sci. 113 ( Pt 5): 817-829.
    Agarwalla, P. K. and M. K. Aghi (2012). Oncolytic herpes simplex virus engineering and preparation. Methods Mol. Biol. 797: 1-19.
    Alazard, N., H. Gruffat, E. Hiriart, A. Sergeant and E. Manet (2003). Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J. Virol. 77(14): 8166-8172.
    Amon, W. and P. J. Farrell (2005). Reactivation of Epstein-Barr virus from latency. Rev. Med. Virol. 15(3): 149-156.
    Annels, N. E., J. S. Kalpoe, R. G. Bredius, E. C. Claas, A. C. Kroes, A. D. Hislop, D. van Baarle, R. M. Egeler, M. J. van Tol and A. C. Lankester (2006). Management of Epstein-Barr virus (EBV) reactivation after allogeneic stem cell transplantation by simultaneous analysis of EBV DNA load and EBV-specific T cell reconstitution. Clin. Infect. Dis. 42(12): 1743-1748.
    Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, T. J. Gibson, G. Hatfull, G. S. Hudson, S. C. Satchwell, C. Seguin and et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310(5974): 207-211.
    Bannister, A. J. and T. Kouzarides (2011). Regulation of chromatin by histone modifications. Cell Res. 21(3): 381-395.
    Barski, A., S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev and K. Zhao (2007). High-resolution profiling of histone methylations in the human genome. Cell 129(4): 823-837.
    Bassett, A. R., C. Tibbit, C. P. Ponting and J. L. Liu (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1): 220-228.
    Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature 447(7143): 407-412.
    Bernhard, W., K. Barreto, A. Saunders, M. S. Dahabieh, P. Johnson and I. Sadowski (2011). The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett. 585(22): 3549-3554.
    Bi, Y., L. Sun, D. Gao, C. Ding, Z. Li, Y. Li, W. Cun and Q. Li (2014). High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog. 10(5): e1004090.
    Binkley, P. F., G. E. Cooke, A. Lesinski, M. Taylor, M. Chen, B. Laskowski, W. J. Waldman, M. E. Ariza, M. V. Williams, Jr., D. A. Knight and R. Glaser (2013). Evidence for the role of Epstein Barr Virus infections in the pathogenesis of acute coronary events. PLoS One 8(1): e54008.
    Bogdanove, A. J. and D. F. Voytas (2011). TAL effectors: customizable proteins for DNA targeting. Science 333(6051): 1843-1846.
    Borra, M. T., B. C. Smith and J. M. Denu (2005). Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280(17): 17187-17195.
    Bosch-Presegue, L., H. Raurell-Vila, A. Marazuela-Duque, N. Kane-Goldsmith, A. Valle, J. Oliver, L. Serrano and A. Vaquero (2011). Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42(2): 210-223.
    Braig, M., S. Lee, C. Loddenkemper, C. Rudolph, A. H. Peters, B. Schlegelberger, H. Stein, B. Dorken, T. Jenuwein and C. A. Schmitt (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051): 660-665.
    Brehm, A., E. A. Miska, D. J. McCance, J. L. Reid, A. J. Bannister and T. Kouzarides (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667): 597-601.
    Cai, L., X. Ma, Y. Huang, Y. Zou and X. Chen (2014). Aberrant histone methylation and the effect of Suv39H1 siRNA on gastric carcinoma. Oncol. Rep. 31(6): 2593-2600.
    Chang, L. K., J. Y. Chung, Y. R. Hong, T. Ichimura, M. Nakao and S. T. Liu (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res. 33(20): 6528-6539.
    Chau, C. M. and P. M. Lieberman (2004). Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J. Virol. 78(22): 12308-12319.
    Chen, H. S., F. Lu and P. M. Lieberman (2013). Epigenetic regulation of EBV and KSHV latency. Curr. Opin. Virol. 3(3): 251-259.
    Chen, L. W., P. J. Chang, H. J. Delecluse and G. Miller (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15): 9635-9650.
    Chen, L. W., V. Raghavan, P. J. Chang, D. Shedd, L. Heston, H. J. Delecluse and G. Miller (2009). Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 386(2): 448-461.
    Chen, Y.-L., Y.-J. Chen, W.-H. Tsai, Y.-C. Ko, J.-Y. Chen and S.-F. Lin (2014). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8(1): 58-65.
    Chen, Y. L., Y. J. Chen, W. H. Tsai, Y. C. Ko, J. Y. Chen and S. F. Lin (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8(1): 58-65.
    Chesnokova, L. S. and L. M. Hutt-Fletcher (2014). Epstein-Barr virus infection mechanisms. Chin. J. Cancer 33(11): 545-548.
    Chiba, T., T. Saito, K. Yuki, Y. Zen, S. Koide, N. Kanogawa, T. Motoyama, S. Ogasawara, E. Suzuki, Y. Ooka, A. Tawada, M. Otsuka, M. Miyazaki, A. Iwama and O. Yokosuka (2015). Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136(2): 289-298.
    Chien, Y. C., J. Y. Chen, M. Y. Liu, H. I. Yang, M. M. Hsu, C. J. Chen and C. S. Yang (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N. Engl. J. Med. 345(26): 1877-1882.
    Chiu, S. H., C. C. Wu, C. Y. Fang, S. L. Yu, H. Y. Hsu, Y. H. Chow and J. Y. Chen (2014). Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget 5(18): 8583-8601.
    Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini and F. Zhang (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819-823.
    Countryman, J. K., L. Gradoville and G. Miller (2008). Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J. Virol. 82(10): 4706-4719.
    Darr, C. D., A. Mauser and S. Kenney (2001). Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75(13): 6135-6142.
    de-Vathaire, F., H. Sancho-Garnier, H. de-The, C. Pieddeloup, G. Schwaab, J. H. Ho, R. Ellouz, C. Micheau, M. Cammoun, Y. Cachin and et al. (1988). Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int. J. Cancer 42(2): 176-181.
    De Leo, A., G. Arena, E. Lacanna, G. Oliviero, F. Colavita and E. Mattia (2012). Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt's lymphoma cells by affecting multiple molecular targets. Antiviral Res. 96(2): 196-202.
    De Leo, A., G. Arena, C. Stecca, M. Raciti and E. Mattia (2011). Resveratrol inhibits proliferation and survival of Epstein Barr virus-infected Burkitt's lymphoma cells depending on viral latency program. Mol. Cancer Res. 9(10): 1346-1355.
    Delecluse, H. J., R. Feederle, B. O'Sullivan and P. Taniere (2007). Epstein Barr virus-associated tumours: an update for the attention of the working pathologist. J. Clin. Pathol. 60(12): 1358-1364.
    Dong, K. B., I. A. Maksakova, F. Mohn, D. Leung, R. Appanah, S. Lee, H. W. Yang, L. L. Lam, D. L. Mager, D. Schubeler, M. Tachibana, Y. Shinkai and M. C. Lorincz (2008). DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 27(20): 2691-2701.
    du Chene, I., E. Basyuk, Y. L. Lin, R. Triboulet, A. Knezevich, C. Chable-Bessia, C. Mettling, V. Baillat, J. Reynes, P. Corbeau, E. Bertrand, A. Marcello, S. Emiliani, R. Kiernan and M. Benkirane (2007). Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J. 26(2): 424-435.
    Ebina, H., N. Misawa, Y. Kanemura and Y. Koyanagi (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3: 2510.
    El-Guindy, A., M. Ghiassi-Nejad, S. Golden, H. J. Delecluse and G. Miller (2013). Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J. Virol. 87(1): 208-223.
    Epstein, M. A., G. Henle, B. G. Achong and Y. M. Barr (1965). Morphological and biological studies on a virus in cultured lymphoblasts from burkitt's lymphoma. J. Exp. Med. 121: 761-770.
    Espinoza, J. L., A. Takami, L. Q. Trung, S. Kato and S. Nakao (2012). Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV-immortalized human B cells. PLoS One 7(12): e51306.
    Fang, C. Y., C. H. Lee, C. C. Wu, Y. T. Chang, S. L. Yu, S. P. Chou, P. T. Huang, C. L. Chen, J. W. Hou, Y. Chang, C. H. Tsai, K. Takada and J. Y. Chen (2009). Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int. J. Cancer 124(9): 2016-2025.
    Feederle, R., M. Kost, M. Baumann, A. Janz, E. Drouet, W. Hammerschmidt and H. J. Delecluse (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 19(12): 3080-3089.
    Firestein, R., X. Cui, P. Huie and M. L. Cleary (2000). Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol. Cell. Biol. 20(13): 4900-4909.
    Fritsch, L., P. Robin, J. R. Mathieu, M. Souidi, H. Hinaux, C. Rougeulle, A. Harel-Bellan, M. Ameyar-Zazoua and S. Ait-Si-Ali (2010). A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell 37(1): 46-56.
    Fu, Y., J. D. Sander, D. Reyon, V. M. Cascio and J. K. Joung (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32(3): 279-284.
    Fu, Z. and M. J. Cannon (2000). Functional analysis of the CD4(+) T-cell response to Epstein-Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression. J. Virol. 74(14): 6675-6679.
    Gary, J. D. and S. Clarke (1998). RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol. Biol. 61: 65-131.
    Glickman, M. H. and A. Ciechanover (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82(2): 373-428.
    Goldberg, A. D., C. D. Allis and E. Bernstein (2007). Epigenetics: a landscape takes shape. Cell 128(4): 635-638.
    Grewal, S. I. and D. Moazed (2003). Heterochromatin and epigenetic control of gene expression. Science 301(5634): 798-802.
    Grossman, S. R., E. Johannsen, X. Tong, R. Yalamanchili and E. Kieff (1994). The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc. Natl. Acad. Sci. U. S. A. 91(16): 7568-7572.
    Gruffat, H., E. Manet, A. Rigolet and A. Sergeant (1990). The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res. 18(23): 6835-6843.
    He, M. and S. J. Gao (2014). A novel role of SIRT1 in gammaherpesvirus latency and replication. Cell Cycle 13(21): 3328-3330.
    Henle, G., W. Henle and V. Diehl (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc. Natl. Acad. Sci. U. S. A. 59(1): 94-101.
    Henle, W., J. H. Ho, G. Henle, J. C. Chau and H. C. Kwan (1977). Nasopharyngeal carcinoma: significance of changes in Epstein-Barr virus-related antibody patterns following therapy. Int. J. Cancer 20(5): 663-672.
    Hernando, H., A. B. Islam, J. Rodriguez-Ubreva, I. Forne, L. Ciudad, A. Imhof, C. Shannon-Lowe and E. Ballestar (2014). Epstein-Barr virus-mediated transformation of B cells induces global chromatin changes independent to the acquisition of proliferation. Nucleic Acids Res. 42(1): 249-263.
    Hill, J. M., D. C. Quenelle, R. D. Cardin, J. L. Vogel, C. Clement, F. J. Bravo, T. P. Foster, M. Bosch-Marce, P. Raja, J. S. Lee, D. I. Bernstein, P. R. Krause, D. M. Knipe and T. M. Kristie (2014). Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes. Sci. Transl. Med. 6(265): 265ra169.
    Ho, C. H., C. F. Hsu, P. F. Fong, S. K. Tai, S. L. Hsieh and C. J. Chen (2007). Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J. Virol. 81(9): 4837-4847.
    Hough, R., G. Pratt and M. Rechsteiner (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262(17): 8303-8313.
    Hsieh, J. J. and S. D. Hayward (1995). Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268(5210): 560-563.
    Hsu, P. D., E. S. Lander and F. Zhang (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6): 1262-1278.
    Hsu, T. Y., Y. Chang, P. W. Wang, M. Y. Liu, M. R. Chen, J. Y. Chen and C. H. Tsai (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86(Pt 2): 317-322.
    Huang, S. Y., M. J. Hsieh, C. Y. Chen, Y. J. Chen, J. Y. Chen, M. R. Chen, C. H. Tsai, S. F. Lin and T. Y. Hsu (2012). Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3sigma arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J. Gen. Virol. 93(Pt 1): 139-149.
    Hung, C. H. and S. T. Liu (1999). Characterization of the Epstein-Barr virus BALF2 promoter. J. Gen. Virol. 80 ( Pt 10): 2747-2750.
    Hutt-Fletcher, L. M. (2007). Epstein-Barr virus entry. J. Virol. 81(15): 7825-7832.
    Hwang, K. K., J. C. Eissenberg and H. J. Worman (2001). Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl. Acad. Sci. U. S. A. 98(20): 11423-11427.
    Hwang, W. Y., Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J. R. Yeh and J. K. Joung (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3): 227-229.
    Imai, K., N. Kamio, M. E. Cueno, Y. Saito, H. Inoue, I. Saito and K. Ochiai (2014). Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 281(9): 2148-2158.
    Imai, K., H. Togami and T. Okamoto (2010). Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J. Biol. Chem. 285(22): 16538-16545.
    Jiang, W., D. Bikard, D. Cox, F. Zhang and L. A. Marraffini (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31(3): 233-239.
    Kenney, S., E. Holley-Guthrie, E. C. Mar and M. Smith (1989). The Epstein-Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J. Virol. 63(9): 3878-3883.
    Khanal, P., G. Kim, S. C. Lim, H. J. Yun, K. Y. Lee, H. K. Choi and H. S. Choi (2013). Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27(11): 4606-4618.
    Kilger, E., A. Kieser, M. Baumann and W. Hammerschmidt (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17(6): 1700-1709.
    Klein, G., G. Pearson, G. Henle, W. Henle, V. Diehl and J. C. Niederman (1968). Relation between Epstein-- Barr viral and cell membrane immunofluorescence in Burkitt tumor cells. II. Comparison of cells and sera from patients with Burkitt's lymphoma and infectious mononucleosis. J. Exp. Med. 128(5): 1021-1030.
    Kooistra, S. M. and K. Helin (2012). Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13(5): 297-311.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128(4): 693-705.
    Kuppers, R. (2003). B cells under influence: transformation of B cells by Epstein-Barr virus. Nat. Rev. Immunol. 3(10): 801-812.
    Kutok, J. L. and F. Wang (2006). Spectrum of Epstein-Barr virus-associated diseases. Annu. Rev. Pathol. 1: 375-404.
    Lachner, M., D. O'Carroll, S. Rea, K. Mechtler and T. Jenuwein (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824): 116-120.
    Lan, Y. Y., T. H. Yeh, W. H. Lin, S. Y. Wu, H. C. Lai, F. H. Chang, K. Takada and Y. Chang (2013). Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One 8(2): e56121.
    Lecker, S. H., A. L. Goldberg and W. E. Mitch (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17(7): 1807-1819.
    Lee, M. H., M. Jothi, A. V. Gudkov and A. K. Mal (2011). Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res. 71(11): 3921-3931.
    Li, D., Z. Qiu, Y. Shao, Y. Chen, Y. Guan, M. Liu, Y. Li, N. Gao, L. Wang, X. Lu, Y. Zhao and M. Liu (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31(8): 681-683.
    Liang, Y., J. L. Vogel, A. Narayanan, H. Peng and T. M. Kristie (2009). Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat. Med. 15(11): 1312-1317.
    Lieberman, P. M. (2006). Chromatin regulation of virus infection. Trends Microbiol. 14(3): 132-140.
    Maggio, I., M. Holkers, J. Liu, J. M. Janssen, X. Chen and M. A. Goncalves (2014). Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci. Rep. 4: 5105.
    Mali, P., L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville and G. M. Church (2013). RNA-guided human genome engineering via Cas9. Science 339(6121): 823-826.
    Mancao, C. and W. Hammerschmidt (2007). Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110(10): 3715-3721.
    Marquitz, A. R., A. Mathur, C. S. Nam and N. Raab-Traub (2011). The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412(2): 392-400.
    Melcher, M., M. Schmid, L. Aagaard, P. Selenko, G. Laible and T. Jenuwein (2000). Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20(10): 3728-3741.
    Miller, G., A. El-Guindy, J. Countryman, J. Ye and L. Gradoville (2007). Lytic cycle switches of oncogenic human gammaherpesviruses. Adv. Cancer Res. 97: 81-109.
    Mocarski, E. S., L. E. Post and B. Roizman (1980). Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22(1 Pt 1): 243-255.
    Murata, T., Y. Kondo, A. Sugimoto, D. Kawashima, S. Saito, H. Isomura, T. Kanda and T. Tsurumi (2012). Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86(9): 4752-4761.
    Murata, T. and T. Tsurumi (2014). Switching of EBV cycles between latent and lytic states. Rev. Med. Virol. 24(3): 142-153.
    Murray, K. (1964). The occurrence of epsilon-n-methyl lysine in histones. Biochemistry 3: 10-15.
    Nagata, K., S. Fukata, K. Kanai, Y. Satoh, T. Segawa, S. Kuwamoto, H. Sugihara, M. Kato, I. Murakami, K. Hayashi and T. Sairenji (2011). The influence of Epstein-Barr virus reactivation in patients with Graves' disease. Viral Immunol. 24(2): 143-149.
    Nakayama, J., J. C. Rice, B. D. Strahl, C. D. Allis and S. I. Grewal (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514): 110-113.
    Nanbo, A., K. Inoue, K. Adachi-Takasawa and K. Takada (2002). Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. EMBO J. 21(5): 954-965.
    Niedobitek, G., N. Meru and H. J. Delecluse (2001). Epstein-Barr virus infection and human malignancies. Int. J. Exp. Pathol. 82(3): 149-170.
    Niu, Y., B. Shen, Y. Cui, Y. Chen, J. Wang, L. Wang, Y. Kang, X. Zhao, W. Si, W. Li, A. P. Xiang, J. Zhou, X. Guo, Y. Bi, C. Si, B. Hu, G. Dong, H. Wang, Z. Zhou, T. Li, T. Tan, X. Pu, F. Wang, S. Ji, Q. Zhou, X. Huang, W. Ji and J. Sha (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4): 836-843.
    Peters, A. H., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia and T. Jenuwein (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3): 323-337.
    Pickart, C. M. (2004). Back to the future with ubiquitin. Cell 116(2): 181-190.
    Quinlivan, E. B., E. A. Holley-Guthrie, M. Norris, D. Gutsch, S. L. Bachenheimer and S. C. Kenney (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res. 21(14): 1999-2007.
    Ran, F. A., P. D. Hsu, C. Y. Lin, J. S. Gootenberg, S. Konermann, A. E. Trevino, D. A. Scott, A. Inoue, S. Matoba, Y. Zhang and F. Zhang (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 1380-1389.
    Rea, S., F. Eisenhaber, D. O'Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechtler, C. P. Ponting, C. D. Allis and T. Jenuwein (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796): 593-599.
    Robertson, E. S., J. Lin and E. Kieff (1996). The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol. 70(5): 3068-3074.
    Robinson, A. R., S. S. Kwek, S. R. Hagemeier, C. K. Wille and S. C. Kenney (2011). Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J. Virol. 85(17): 8940-8953.
    Rossetto, D., N. Avvakumov and J. Cote (2012). Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7(10): 1098-1108.
    Rovedo, M. and R. Longnecker (2007). Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J. Virol. 81(1): 84-94.
    Sakakibara, S., K. Ueda, K. Nishimura, E. Do, E. Ohsaki, T. Okuno and K. Yamanishi (2004). Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi's sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J. Virol. 78(14): 7299-7310.
    Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta, G. Reuter, D. Reinberg and T. Jenuwein (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18(11): 1251-1262.
    Schuhmacher, M. K., S. Kudithipudi, D. Kusevic, S. Weirich and A. Jeltsch (2015). Activity and specificity of the human SUV39H2 protein lysine methyltransferase. Biochim. Biophys. Acta 1849(1): 55-63.
    Sdek, P., H. Ying, D. L. Chang, W. Qiu, H. Zheng, R. Touitou, M. J. Allday and Z. X. Xiao (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol. Cell 20(5): 699-708.
    Sen, N. and S. H. Snyder (2011). Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc. Natl. Acad. Sci. U. S. A. 108(50): 20178-20183.
    Shan, Q., Y. Wang, J. Li, Y. Zhang, K. Chen, Z. Liang, K. Zhang, J. Liu, J. J. Xi, J. L. Qiu and C. Gao (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31(8): 686-688.
    Shannon-Lowe, C. and M. Rowe (2011). Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog. 7(5): e1001338.
    Shinkai, Y. and M. Tachibana (2011). H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25(8): 781-788.
    Shogren-Knaak, M., H. Ishii, J. M. Sun, M. J. Pazin, J. R. Davie and C. L. Peterson (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762): 844-847.
    Sidler, C., R. Woycicki, D. Li, B. Wang, I. Kovalchuk and O. Kovalchuk (2014). A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging 6(7): 545-563.
    Silins, S. L. and T. B. Sculley (1995). Burkitt's lymphoma cells are resistant to programmed cell death in the presence of the Epstein-Barr virus latent antigen EBNA-4. Int. J. Cancer 60(1): 65-72.
    Sivachandran, N., N. N. Thawe and L. Frappier (2011). Epstein-Barr virus nuclear antigen 1 replication and segregation functions in nasopharyngeal carcinoma cell lines. J. Virol. 85(19): 10425-10430.
    Suenaga, T., M. Kohyama, K. Hirayasu and H. Arase (2014). Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol. Immunol. 58(9): 513-522.
    Tanaka, K., L. Waxman and A. L. Goldberg (1983). ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol. 96(6): 1580-1585.
    Trievel, R. C., B. M. Beach, L. M. Dirk, R. L. Houtz and J. H. Hurley (2002). Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111(1): 91-103.
    Tsurumi, T., M. Fujita and A. Kudoh (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev. Med. Virol. 15(1): 3-15.
    Urnov, F. D., E. J. Rebar, M. C. Holmes, H. S. Zhang and P. D. Gregory (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9): 636-646.
    Vaquero, A., M. Scher, H. Erdjument-Bromage, P. Tempst, L. Serrano and D. Reinberg (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450(7168): 440-444.
    Verdone, L., M. Caserta and E. Di Mauro (2005). Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83(3): 344-353.
    Wang, D., J. Zhou, X. Liu, D. Lu, C. Shen, Y. Du, F. Z. Wei, B. Song, X. Lu, Y. Yu, L. Wang, Y. Zhao, H. Wang, Y. Yang, Y. Akiyama, H. Zhang and W. G. Zhu (2013). Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability SUV39H1me avtivity downregulation. Proc. Natl. Acad. Sci. U. S. A. 110(14): 5516-5521.
    Wang, H., W. An, R. Cao, L. Xia, H. Erdjument-Bromage, B. Chatton, P. Tempst, R. G. Roeder and Y. Zhang (2003). mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12(2): 475-487.
    Wang, J. and S. R. Quake (2014). RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl. Acad. Sci. U. S. A. 111(36): 13157-13162.
    Wood, A. and A. Shilatifard (2004). Posttranslational modifications of histones by methylation. Adv. Protein Chem. 67: 201-222.
    Wu, C. C., M. T. Liu, Y. T. Chang, C. Y. Fang, S. P. Chou, H. W. Liao, K. L. Kuo, S. L. Hsu, Y. R. Chen, P. W. Wang, Y. L. Chen, H. Y. Chuang, C. H. Lee, M. Chen, W. S. Wayne Chang and J. Y. Chen (2010). Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res. 38(6): 1932-1949.
    Wu, Y., D. Liang, Y. Wang, M. Bai, W. Tang, S. Bao, Z. Yan, D. Li and J. Li (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13(6): 659-662.
    Yang, Y., R. Liu, R. Qiu, Y. Zheng, W. Huang, H. Hu, Q. Ji, H. He, Y. Shang, Y. Gong and Y. Wang (2015). CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 34(1): 104-118.
    Yokoyama, Y., M. Hieda, Y. Nishioka, A. Matsumoto, S. Higashi, H. Kimura, H. Yamamoto, M. Mori, S. Matsuura and N. Matsuura (2013). Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci. 104(7): 889-895.
    Yuan, M., W. Zhang, J. Wang, C. Al Yaghchi, J. Ahmed, L. Chard, N. R. Lemoine and Y. Wang (2015). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J. Virol. 89(9): 5176-5179.
    Yuen, K. S., C. P. Chan, N. H. Wong, C. H. Ho, T. H. Ho, T. Lei, W. Deng, S. W. Tsao, H. Chen, K. H. Kok and D. Y. Jin (2015). CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J. Gen. Virol. 96(Pt 3): 626-636.
    Zacny, V. L., J. Wilson and J. S. Pagano (1998). The Epstein-Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J. Virol. 72(10): 8043-8051.
    Zhao, B., D. R. Marshall and C. E. Sample (1996). A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J. Virol. 70(7): 4228-4236.
    Zimmermann, J. and W. Hammerschmidt (1995). Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J. Virol. 69(5): 3147-3155.

    下載圖示 校內:2020-08-04公開
    校外:2020-08-04公開
    QR CODE