簡易檢索 / 詳目顯示

研究生: 高挺淵
Gao, Ting-Yuan
論文名稱: 計算熱力學輔助設計精煉渣系用以提升鋁脫氧鋼清淨度
Calculational Thermodynamics Assisted Design of Ladle Slag System for Improving the Cleanliness of Al-Killed Steel
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 93
中文關鍵詞: 表面張力介在物熱力學溶解速率界面張力
外文關鍵詞: surface tension, inclusion, thermodynamic, dissolution rate, interfacial tension
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非金屬介在物通常是來自用於脫氧的合金元素產生的殘留產物,又或是熔鋼和大氣、爐渣及耐火材料之間反應產生的反應產物,而介在物的 存在會降低金屬鑄件的韌性並影響機械性能,使得最終產品的利用受到 限制。而為了有效去除介在物,需要使介在物更容易由鋼液分離到渣相中,並加速爐渣溶解介在物的速率。本研究先利用熱力學方式計算頂渣的表 面張力,配合 FactSage 等熱力學計算軟體來計算液態區範圍,並在此範圍中選取不同的組成成分點。實驗使用高週波加熱系統進行實驗對不同成分組成的渣樣,在「鋼-渣」及「介在物-渣」界面的潤濕行為與介在物溶解速率進行觀察與計算,並探討成分的變化與界面張力、溶解速率之間的關係,來獲得鋼液中的介在物更容易突破渣鋼界面、增進介在物去除的效率的成分趨勢。

    Non-metallic inclusions are usually residual products from alloying elements used for deoxidation or reaction products produced by the reaction between molten steel and atmosphere, slag, and refractory materials. The presence of inclusions will reduce the toughness of castings and affect the mechanical properties and limit the use of the final product. In order to effectively remove the inclusion, it is necessary to make the inclusion easier to separate from the molten steel into the slag and to accelerate the rate of the slag dissolving the inclusions. In this study, the surface tension of the top slag is calculated by thermodynamics, combined with FactSage and other thermodynamic calculation software to calculate the range of the liquid region, and different composition points of the experiment are selected in this range. The experiment uses a High-frequency induction furnace to conduct experiments at the different compositions of slag. Observe and calculate the wetting behavior of the "steel-slag" and "inclusion-slag" interface and the dissolution rate of the inclusion. The relationship between the change of composition and the interfacial tension and dissolution rate is also discussed to obtain the composition trend of the inclusion in the molten steel that is easier to break through the slag-steel interface and improve the efficiency of inclusion removal.

    摘要 I Abstract II Acknowledgement III Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1 Al-Killed steel inclusions 4 2.1.1  Overview of inclusions 4 2.1.2  Evolution of inclusion 5 2.1.3  Movement of inclusions 9 2.2 Tension mechanisms 11 2.2.1  Surface tension 11 2.2.2  Interfacial tension of immiscible liquid 13 2.2.3  Interfacial tension and wetting between liquid and solid 14 2.3 Work of adhesion 16 2.4 Effect of concentration driving force on aluminum oxide dissolution 17 2.4.1  Effect of concentration driving force 18 2.4.2  Effect of mass transfer 20 2.5 Effect of slag components on interfacial tension 21 2.6 High temperature interfacial tension measurement mechanism 26 Chapter 3. Thermodynamic calculation method 29 3.1 Experimental and Calculation Methods 29 
3.1.1 Calculate the surface tension 29 3.1.2 Calculation of phase diagrams and equilibrium 30 3.2 Preparation of materials 32 3.3 Experimental equipment 33 3.3.1  High-frequency induction furnace 33 3.3.2  Furnace temperature calibration 35 3.4 Experimental process 36 3.4.1  Slag modification calculation 37 3.4.2  Slag-steel interface tension experiment 38 3.4.3  Slag-alumina dissolution experiment 39 3.4.4  Slag-alumina wetting experiment 40 Chapter 4. Results and Discussion 43 4.1 Calculate the surface tension 43 4.1.1  Slag surface tension equation 43 4.1.2  Calculation results 46 4.1.3  The influence of slag component on surface tension 53 4.2 Interfacial tension calculation from contour 56 4.2.1 Runge-Kutta method(RK method) 58 4.3 Selection and adjustment of composition of experimental slag 58 4.3.1  Calculation of the phase diagram of the slag 58 4.3.2  Experimental point selection 62 4.3.3  Preparation of slag powder 65 4.4 Slag-steel interface tension experiment 66 4.4.1  Experimental methodology 66 4.4.2  Experimental results and analysis of interfacial tension 67 4.5 Slag-Al2O3 dissolution experiment 69 4.5.1  Experimental methodology 69 4.5.2  Alumina corrosion experiment 71 4.6 Slag-Al2O3 wetting experiment 77 4.6.1  In-situ wetting experiment 77 4.6.2  Non-situ wetting experiment 82 Chapter 5. Conclusions 85 Chapter 6. References 87

    [1] L. F. Zhang and B. G. Thomas, "State of the art in evaluation and control of steel cleanliness," Isij International, vol. 43, no. 3, pp. 271-291, 2003, doi: 10.2355/isijinternational.43.271.
    [2] P. Bate and J. Q. da Fonseca, "Texture development in the cold rolling of IF steel," Materials Science and Engineering: A, vol. 380, no. 1-2, pp. 365-377, 2004.
    [3] P. Zhao, G. Cheng, and S. Shen, "Technical handbook of secondary refining and hot metal pretreatment," ed: Beijing: Metallurgical Industry Press, 2004.
    [4] K. W. Yi, C. Tse, J. H. Park, M. Valdez, A. W. Cramb, and S. Sridhar, "Determination of dissolution time of Al2O3 and MgO inclusions in synthetic Al2O3-CaO-MgO slags," (in English), Scandinavian Journal of Metallurgy, Article vol. 32, no. 4, pp. 177-184, Aug 2003, doi: 10.1034/j.1600-0692.2003.20631.x.
    [5] S. H. Lee et al., "Separation and dissolution of Al2O3 inclusions at slag/metal interfaces," (in English), J. Non-Cryst. Solids, Article; Proceedings Paper vol. 282, no. 1, pp. 41-48, Apr 2001, doi: 10.1016/s0022-3093(01)00327-1.
    [6] L. Zhang and B. G. Thomas, "Inclusions in continuous casting of steel," in XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, 2003, vol. 26: Citeseer, p.28.
    [7] R. Wang, Y. H. Li, D. Z. Li, Y. Kang, Y. P. Bao, and Z. J. Yan, "Inclusions Absorbed by Slags in Interstitial-Free Steel Production," (in English), Steel Res. Int., Article vol. 91, no. 2, p. 9, Feb 2020, Art no. 1900440, doi: 10.1002/srin.201900440.
    [8] P. A. Thornton, "Influence of nonmetallic inclusions on the mechanical properties of steel. A review," Journal of Materials Science, vol. 6, no. 4, pp. 347-356, 1971, doi: 10.1007/pl00020378.
    [9] R. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials. 4th ed1996," ed: John Wiley & Sns, Inc.
    [10] 朱苗勇 and 鄧志銀,"鋼精煉過程非金屬夾雜物演變與控制," 金屬學報,vol.58, no. 1, pp. 28-44, 2022.
    [11] Z. Y. Deng and M. Y. Zhu, "Evolution Mechanism of Non-metallic Inclusions in Al- Killed Alloyed Steel during Secondary Refining Process," Isij International, vol. 53, no. 3, pp. 450-458, 2013, doi: 10.2355/isijinternational.53.450.
    [12] G. Jing, S. S. Cheng, and Z. J. Cheng, "Mechanism of Non-metallic Inclusion Formation and Modification and Their Deformation during Compact Strip Production (CSP) Process for Aluminum-Killed Steel," Isij International, vol. 53, no. 12, pp. 2142-2151, 2013, doi: 10.2355/isijinternational.53.2142.
    [13] M. Jiang, X. H. Wang, B. Chen, and W. J. Wang, "Laboratory Study on Evolution Mechanisms of Non-metallic Inclusions in High Strength Alloyed Steel Refined by High Basicity Slag," Isij International, vol. 50, no. 1, pp. 95-104, 2010, doi: 10.2355/isijinternational.50.95.
    [14] Z. Y. Deng, L. Chen, G. D. Song, and M. Y. Zhu, "Formation and Evolution of Non-metallic Inclusions in Ti-Bearing Al-Killed Steel During Secondary Refining Process," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 51, no. 1, pp. 173-186, Feb 2020, doi: 10.1007/s11663-019-01728-4.
    [15] L. Z. Kong, Z. Y. Deng, and M. Y. Zhu, "Formation and Evolution of Non-metallic Inclusions in Medium Mn Steel during Secondary Refining Process," Isij International, vol. 57, no. 9, pp. 1537-1545, 2017, doi: 10.2355/isijinternational.ISIJINT-2017-118.
    [16] J. Y. Li, G. G. Cheng, Q. Ruan, J. X. Pan, and X. R. Chen, "Evolution behaviour of nonmetallic inclusions in Ti-bearing 11Cr stainless steel with calcium treatment," Ironmaking & Steelmaking, vol. 47, no. 1, pp. 31-39, Jan 2020, doi: 10.1080/03019233.2019.1568367.
    [17] S. Lyu et al., "Formation Mechanism of Al2O3-Containing Inclusions in Al- Deoxidized Spring Steel," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 50, no. 5, pp. 2205-2220, Oct 2019, doi: 10.1007/s11663-019-01644-7.
    [18] S. F. Yang, W. Liu, and J. S. Li, "Motion of Solid Particles at Molten Metal-Liquid Slag Interface," Jom, vol. 67, no. 12, pp. 2993-3001, Dec 2015, doi: 10.1007/s11837- 015-1642-y.
    [19] B. H. Reis, W. V. Bielefeldt, and A. C. F. Vilela, "Absorption of non-metallic inclusions by steelmaking slags-a review," Journal of Materials Research and Technology-Jmr&T, vol. 3, no. 2, pp. 179-185, Apr-Jun 2014, doi: 10.1016/j.jmrt.2014.03.011.
    [20] J. Y. Choi and H. G. Lee, "Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2," Isij International, vol. 43, no. 9, pp. 1348-1355, 2003, doi: 10.2355/isijinternational.43.1348.
    [21] H. P. Sun, K. Nakashima, and K. Mori, "Interfacial tension between molten iron and CaO-SiO2 based fluxes," Isij International, vol. 37, no. 4, pp. 323-331, 1997, doi: 10.2355/isijinternational.37.323.
    [22] K. Nakashima and K. Mori, "Interfacial properties of liquid iron alloys and liquid slags relating to iron- and steel-making processes," Isij International, vol. 32, no. 1, pp. 11-18, 1992, doi: 10.2355/isijinternational.32.11.
    [23] R. E. Boni and G. Derge, " Surface tensions of silicates," Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 206, no. 1, pp. 53- 59, 1956. [Online]. Available: <Go to ISI>://WOS:A1956WY76900002.
    [24] J. Zhang, "Coexistence theory of slag structure and its application to calculation of oxidizing capability of slag melts," Journal of Iron and Steel Research International, vol. 10, no. 1, pp. 1-10, Feb 2003. [Online]. Available: <Go to ISI>://WOS:000182329200001.
    [25] T. Tanaka, T. Kitamura, and I. A. Back, "Evaluation of surface tension of molten ionic mixtures," Isij International, vol. 46, no. 3, pp. 400-406, 2006, doi: 10.2355/isijinternational.46.400.
    [26] J. J. Xin, N. Wang, M. Chen, and L. Gan, "Surface Tension Calculation of Molten Slag in SiO2-Al2O3-CaO-MgO Systems Based on a Statistical Modelling Approach," Isij International, vol. 59, no. 5, pp. 759-767, 2019, doi: 10.2355/isijinternational.ISIJINT-2018-746.
    [27] H. Abdeyazdan, B. J. Monaghan, R. J. Longbottom, M. A. Rhamdhani, N. Dogan, and M. W. Chapman, "Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag-Solid Oxide Systems," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 48, no. 4, pp. 1970-1980, Aug 2017, doi: 10.1007/s11663-017-0978-9.
    [28] P. Koukkari and R. Pajarre, "Calculation of constrained equilibria by Gibbs energy minimization," Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, vol. 30, no. 1, pp. 18-26, Mar 2006, doi: 10.1016/j.calphad.2005.11.007.
    [29] B. F. Dyson, "Surface tension of iron and some iron alloys," Transactions of the Metallurgical Society of Aime, vol. 227, no. 5, pp. 1098-&, 1963. [Online]. Available: <Go to ISI>://WOS:A19633358C00012.
    [30] A. Kasama, Z. I. Morita, and T. Inui, "Measurements of the surface tension of liquid Ag-Au and Cu-(Fe, Co, Ni) binary alloys," Journal of the Japan Institute of Metals, vol. 42, no. 12, pp. 1206-1212, 1978, doi: 10.2320/jinstmet1952.42.12_1206.
    [31] T. Tanaka, "Surface tension models," in Treatise on Process Metallurgy: Elsevier, 2014, pp. 35-59.
    [32] L. A. Girifalco and R. J. Good, "A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension," Journal of Physical Chemistry, vol. 61, no. 7, pp. 904-909, 1957, doi: 10.1021/j150553a013.
    [33] R. J. Good, "Contact-angle, wetting, and adhesion - a criticle-review," (in English), J. Adhes. Sci. Technol., Review vol. 6, no. 12, pp. 1269-1302, 1992, doi: 10.1163/156856192x00629.
    [34] L. M. Cheng, L. F. Zhang, and Y. Ren, "Wettability between 304 stainless steel and refractory materials," (in English), Journal of Materials Research and Technology- Jmr&T, Article vol. 9, no. 3, pp. 5784-5793, May-Jun 2020, doi: 10.1016/j.jmrt.2020.03.103.
    [35] A. H. Bui, H. M. Ha, I. S. Chung, and H. G. Lee, "Dissolution kinetics of alumina into mold fluxes for continuous steel casting," Isij International, vol. 45, no. 12, pp. 1856-1863, 2005, doi: 10.2355/isijinternational.45.1856.
    [36] Y. J. Park, Y. M. Cho, W. Y. Cha, and Y. B. Kang, "Dissolution kinetics of alumina in molten CaO-Al2O3-FetO-MgO-SiO2 oxide representing the RH slag in steelmaking process," Journal of the American Ceramic Society, vol. 103, no. 3, pp. 2210-2224, Mar 2020, doi: 10.1111/jace.16879.
    [37] S. Seetharaman, Fundamentals of metallurgy. Taylor & Francis, 2005.
    [38] J. Colombani, "Dissolution measurement free from mass transport," (in English), Pure Appl. Chem., Article; Proceedings Paper vol. 85, no. 1, pp. 61-70, 2013, doi: 10.1351/pac-con-12-03-07.
    [39] 向升林, "SiO_2 與 MgO 在鐵酸鈣系熔體中的溶解動力學研究," 重慶大學, 2015.
    [40] 徐坤朋, "高錳高鋁鋼保護渣吸收 Al_2O_3 夾雜的研究," 重慶大學, 2018.
    [41] A. Shankar, M. Gornerup, A. K. Lahiri, and S. Seetharaman, "Sulfide capacity of high alumina blast furnace slags," Metallurgical and Materials Transactions B- Process Metallurgy and Materials Processing Science, vol. 37, no. 6, pp. 941-947, Dec 2006, doi: 10.1007/bf02735016.
    [42] S. C. Park, H. Gaye, and H. G. Lee, "Interfacial tension between molten iron and CaO-SiO2-MgO-Al2O3-FeO slag system," Ironmaking & Steelmaking, vol. 36, no. 1, pp. 3-11, Jan 2009, doi: 10.1179/174328108x358622.
    [43] E. J. Jung, W. Kim, S. Il, and D. J. Min, "A study on the interfacial tension between solid iron and CaO-SiO2-MO system," Journal of Materials Science, vol. 45, no. 8, pp. 2023-2029, Apr 2010, doi: 10.1007/s10853-009-3946-1.
    [44] J. Drelich, C. Fang, and C. White, "Measurement of interfacial tension in fluid-fluid systems," Encyclopedia of surface and colloid science, vol. 3, pp. 3158-3163, 2002.
    [45] M. Korenko and F. Simko, "Measurement of Interfacial Tension in Liquid-Liquid High-Temperature Systems," Journal of Chemical and Engineering Data, vol. 55, no. 11, pp. 4561-4573, Nov 2010, doi: 10.1021/je1004752.
    [46] Y. Rotenberg, L. Boruvka, and A. W. Neumann, "Determination of surface tension
    and contact angle from the shapes of axisymmetric fluid interfaces," Journal of Colloid and Interface Science, vol. 93, no. 1, pp. 169-183, 1983, doi: 10.1016/0021-9797(83)90396-x.
    [47] W. D. Kingery and M. Humenik, "Surface tension at elevated temperatures. I. Furnace and method for use of the sessile drop method; surface tension of silicon, iron and nickel," Journal of Physical Chemistry, vol. 57, no. 3, pp. 359-363, 1953, doi: 10.1021/j150504a026.
    [48] Z. K. Liu, "First-Principles Calculations and CALPHAD Modeling of Thermodynamics," Journal of Phase Equilibria and Diffusion, vol. 30, no. 5, pp. 517-534, Oct 2009, doi: 10.1007/s11669-009-9570-6.
    [49] M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hamalainen, "Evaluation of the surface tension of ternary silicate melts containing Al2O3,CaO, FeO, MgO or MnO," Isij International, vol. 47, no. 1, pp. 38-43, 2007.
    [50] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. 32, no. SEP1, pp. 751-767, 1976.
    [51] M. Nakamoto, T. Tanaka, L. Holappa, and M. Hamalainen, "Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O)," Isij International, vol. 47, no. 2, pp. 211-216, 2007.
    [52] M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani, "Evaluation of surface tension of molten slag in multi-component systems," Isij International, vol. 47, no. 7, pp. 935-939, 2007, doi: 10.2355/isijinternational.47.935.
    [53] J. C. Butcher, "On the implementation of implicit Runge-Kutta methods," BIT Numerical Mathematics, vol. 16, no. 3, pp. 237-240, 1976.

    無法下載圖示 校內:2027-07-03公開
    校外:2027-07-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE