簡易檢索 / 詳目顯示

研究生: 林承翰
Lin, Cheng-Han
論文名稱: 應用概念集水區模式探討中間流過程
Simulating the Interflow Process with Conceptual Watershed Model
指導教授: 周乃昉
Zhou, Nai-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 事件型降雨逕流模式中間流單位歷線水筒模式退水段方程式
外文關鍵詞: Event based watershed model, Interflow, Unit hydrograph, Tank model, Recession equation
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   集水區內降雨量與逕流量之相互關係一直以來都是水文分析的重要一環,即當降雨來臨時,可利用降雨資料推求集水區之流量歷線與洪峰流量及時間,提供水資源工程應用在防災和工程規劃上。本研究在建立曾文水庫集水區降雨-逕流模式時,除了考量當地水文及地文基本資料外,更進一步地考慮中間流,探討其對整個集水區流出過程之影響,再進行模擬分析。降雨-逕流分析方法分為很多種,例如單位歷線法(Unit hydrograph)、運動波法(Kinematic wave)、貯蓄函數法(Storage function)及線性水庫法(Linear reservoir)等。本研究採用單位歷線法,單位歷線法過去常以矩陣法(Matrix)求解,但往往產生之單位歷線可能彰顯出不穩定之震盪,甚至有負值的產生,故本研究以線性規劃法(Linear Programming)求解。
      為了進行逕流量重要組成探討,將逕流量分析分為兩個部分:基流分離與其餘之整體計算,並分別採用不同方法求解。基流過去最常使用直線法進行基流分離,但此方法忽略退水段對逕流量的影響,故本研究使用退水段方程式求取退水係數後,利用退水係數求得逐時之基流量變化,再與總逕流量分離;中間流與地表逕流部分,則將有效降雨計算式(NRCS)、水筒模式與單位歷線一併納入集水區模式進行模擬,求得集水區之中間流與各基期之最適單位歷線與地表逕流。
      本研究以台灣南部地區曾文水庫集水區為案例研究,選用9場歷史暴雨事件,應用上述模擬方法,進行優選。有別於以往工程使用之單位歷線,本研究使用降雨時距為0.5小時進行模擬,並在各組成成分結果分析後,進一步地探討集水區之中間流過程,往後可配合完整降雨-逕流過程模擬,建置合理之單位歷線,供未來推估降雨所形成之流量過程。

    The relationship between rainfall and runoff in watershed areas has always been an important part of hydrological analysis. When rainfall comes, its data can be used to estimate the runoff hydrograph, peak flow and peak time of the watershed area to provide water resources engineering applications in disaster prevention and engineering planning. Before the establishment of the rainfall-runoff model in the watershed area of Zengwun Reservoir, this study, in addition to considering the local meteorological, hydrological and geotextuological data, further instilled the interflow process and explored its impact on the outflow process of the entire watershed area. There are many types of analysis methods, such as Unit hydrograph, Kinematic wave, Storage function, and Linear reservoir. In this study, used the Unit hydrograph method. The unit hydrograph method always used to be solved by the Matrix method in the past. However, the unit hydrograph may often show unstable oscillations and even negative values. Therefore, this study uses the linear programming to simulate entire watershed area’s rainfall and runoff process.

    In order to discuss the important composition of runoff, the runoff analysis is divided into two parts: base flow and interflow and surface runoff. After that,they are solved by different methods. The base flow used to use the straight line method for base flow separation. However, this method ignores the influence of the recession section on the runoff. Therefore, the recession equation is used to calculate the recession fator, and the recession fator is used to simulate the hourly baseflow; The interflow and the surface runoff part, the rainfall loss calculation method (NRCS), the water tank model and the unit hydrograph are included in the watershed model to simulate, and then the inteflow and the base period of the optimal watershed area unit hydrographs are obtained.

    In this study, the Zengwun Reservoir watershed area in southern Taiwan was used as a case study. Nine historical typhoon events were selected and the above simulation methods were applied to optimize. Different from the unit hydrograph used in previous projects, this study attempts to simulate the different unit hydrograph definitions in the past. The rainfall duration is 0.5 hours. After analyzing the components, we will further explore the interflow of the watershed area. The flow process can be followed by a complete rainfall-runoff process simulation to establish a reasonable unit hydrograph for future estimation of the flow process formed by rainfall.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號對照表 XII 第一章 前言 1 1.1 問題背景 1 1.2 研究動機 1 1.3 研究目的 2 第二章 文獻回顧 3 2.1 單位歷線 3 2.2 有效雨量分析 4 2.3 事件型集水區模式 5 第三章 研究方法 11 3.1 研究構想與定位 11 3.1.1 中間流過程 11 3.1.2 直接逕流模擬模式架構 13 3.2 集水區模式流出機制 16 3.3 基流 17 3.3.1 基流分離 17 3.3.2 小時退水過程模擬 19 3.4 有效降雨及入滲損失 21 3.4.1 集水區平均雨量計算 21 3.4.2 應用曲線號碼法推估損失雨量 21 3.5 中間流與地下水補注 25 3.5.1 應用簡易水筒模擬中間流 25 3.6 直接逕流 28 3.6.1 單位歷線法 28 3.6.2 應用單位歷線法計算地表逕流 28 第四章 案例研究 31 4.1 曾文水庫集水區概述 31 4.2 案例暴雨事件基本資料與逕流係數 32 4.2.1 集水區雨量測站與平均降雨計算 33 4.3 模式建置與模擬結果討論 36 4.3.1 基流量過程模擬 36 4.3.2 地表逕流與中間流模擬命題 42 4.3.3 數值求解 44 4.3.4 單位歷線與直接逕流過程模擬 45 4.3.5 中間流流量過程特性探討 53 4.4 不計中間流對單位歷線模擬之影響 58 4.5 模擬驗證 68 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 參考文獻 74 附錄一 集水區直接逕流計算之範例優選命題 i

    (1) 丸山利輔,富日正彥,小林慎太郎(1979)。複合水筒模式於廣域水收支解析之應用。日本農業土木學會誌47,19-24。
    (2) 王彥覃(2008)。應用自上而下與自下而上土地利用及降雨-逕流模式模擬土地利用變遷與水文量-以寶橋集水區為例。臺灣大學生物環境系統工程學研究所學位論文,1-109。
    (3) 王如意、易任(1992)。應用水文學(上)(下)。國立編譯館。
    (4) 余世凱(2007)。簡易型水筒模式於筏子溪流域降雨-逕流之應用。中興大學土木工程學系所學位論文,1-8。
    (5) 李光敦(2007)。流域整體治理規劃與淹水資訊系統建置計畫(2/3)。經濟部水利署水利規劃試驗所。
    (6) 李光敦(2012)。水文學。五南圖書出版股份有限公司。
    (7) 巫雅婕(2018)。利用單位歷線與退水曲線法模擬洪水歷線之研究。成功大學水利及海洋工程學系學位論文,1-57。
    (8) 林維侃,鄭皆達,蘇瑞榮(1994)。應用GIS及HEC-1水文模式探討臺灣中部上游集水區降雨逕流之關係。中華水土保持學報,25(3),143-150。
    (9) 陳樹群(1994)。雙層筒狀模式在地下水吸附性汙染物傳輸模擬上之應用。中國工程環境學刊,4(2),119-129。
    (10) 陳鈺雯,林文英(2005)。農業非點源污染模式(AGNPS)不同版本之比較。坡地防災學報,4(2),39-52。
    (11) 陳岱源(2005)。修正型水筒模式應用於基流分離之研究。成功大學水利及海洋工程學系學位論文,1-58。
    (12) 徐百慶(2005)。曾文水庫集水區梅雨期間不同入滲過程分析方法比較。成功大學水利及海洋工程學系學位論文,1-45。
    (13) 徐碧治(1995)。水文學。美商麥格羅希爾國際股份有限公司。
    (14) 張正群(2017)。配合完整降雨-逕流模擬建置單位歷線。成功大學水利及海洋工程學系學位論文,1-77.
    (15) 畢嵐杰(2004)。地表及地表下降雨-逕流模式之研究。國立中興大學土木工程學系博士論文。
    (16) 陳憲宗,曾宏偉,林錦源,楊道昌,游保杉(2011)氣候變遷情境下曾文水庫集水區水文乾旱特性推估。農業工程學報,57(3),44-60。
    (17) 菅原正巳(1972)。水文水櫃模式分析技術研習會講義。國立台灣大學土木工程研究所。
    (18) 劉正川,李彥樺(2006)。不同時期之開發度對集水區逕流模擬之研究。中華水土保持學報,37(2),125-142。
    (19) 賴裕森(2000)。以SCS曲線值法推求翡翠水庫集水區逕流係數之研究。國立中興大學水土保持學系學位論文。
    (20) 鍾閔光,林俐玲(2015)。土壤水文評估模式之介紹。水土保持學報47 (4),1539–1550。
    (21) Bauer, S. W. (1974). A modified Horton equation for infiltration during intermittent rainfall. Hydrological Sciences Journal, 19(2), 219-225.
    (22) Bergström, S., (1972). Utveckling och tillämpning av en digital avrinningsmodell.(Development and application of a digital runoff model, in Swedish). SMHI Notiser och preliminära rapporter, serie HYDROLOGI, no 22, Norrköping.
    (23) Bergström, S. and Forsman, A. ( 1973 ). Development of a conceptual deterministic rainfall-runoff model. Nordic Hydrology, 4, 147 - 170.
    (24) Bergström, S., (1992). The HBV model-its structure and applications. SMHI Reports RH, no. 4, Norrköping.
    (25) Birundu, A. M., & Mutua, B. M. (2017). Analyzing the Mara River Basin Behaviour through Rainfall-Runoff Modeling. International Journal of Geosciences, 8(09), 1118.
    (26) Bruce, J. P., & Clark, R. H. (1966). Introduction to hydrometeorology.
    (27) Bruen, M., & Dooge, J. C. (1984). An efficient and robust method for estimating unit hydrograph ordinates. Journal of Hydrology, 70(1-4), 1-24.
    (28) Bruen, M., & Dooge, J. C. (1989). Unit hydrograph stability and linear algebra. Journal of Hydrology, 111(1-4), 377-390.
    (29) Cavallini, F. (2011). Computing the unit hydrograph via linear programming. Computers & Geosciences, 19(9), 1285-1294.
    (30) Collins, W. T. (1939). Runoff distribution graphs from precipitation occurring in more than one time unit. Civ. Eng.(NY), 9(9), 559-561.
    (31) Crawford, N.H. and R.K. Linsley. (1966). Digital Simulation on Hydrology: Stanford Watershed Model IV. Stanford University Technical Report No. 39, Stanford University, Palo Alto, CA.
    (32) Donigian, A. S., & Imhoff, J. (2006). History and evolution of watershed modeling derived from the Stanford Watershed Model. Watershed models, 21-45.
    (33) Engineers, U. A. C. O. (2000). Hydrologic Modeling System HEC–HMS, Technical Reference Manual. Davis, CA: Hydrologic Engineering Center.
    (34) Hadadin, A. N. (2006). Watershed models and their applicability to the simulation of the rainfall-runoff relationship.WIT Transactions on Engineering Sciences,52.
    (35) Hellweger, F. L., & Maidment, D. R. (1999). Definition and connection of hydrologic elements using geographic data. Journal of Hydrologic Engineering, 4(1), 10-18.
    (36) Knebl, M. R., Yang, Z. L., Hutchison, K., & Maidment, D. R. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75(4), 325-336.
    (37) Linsley, R. K. (1976). Water-resources engineering. WW Norton & Company.
    (38) Lee, K. T., & Chang, C. H. (2005). Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling. Journal of Hydrology, 311(1-4), 91-105.
    (39) Ray Linsley, K. (1958). Hydrology for engineers. McGraw-Hill Book Company; New York.
    (40) Sang, X., Zhou, Z., Wang, H., Qin, D., Zhai, Z., & Chen, Q. (2009). Development of soil and water assessment tool model on human water use and application in the area of high human activities, Tianjin, China. Journal of irrigation and drainage engineering, 136(1), 23-30.
    (41) Sherman, L. K. (1932). Streamflow from rainfall by the unit-graph method. Eng. News Record, 108, 501-505.
    (42) Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly weather review, 39(7), 1082-1089.
    (43) Wallner, M., Haberlandt, U., & Dietrich, J. (2012). Evaluation of different calibration strategies for large scale continuous hydrological modelling. Advances in Geosciences 31 (2012), 31, 67-74.
    (44) Wang, X., Yang, T., Xu, C. Y., Yong, B., & Shi, P. (2019). Understanding the discharge regime of a glacierized alpine catchment in the Tianshan Mountains using an improved HBV-D hydrological model. Global and planetary change, 172, 211-222.
    (45) Yue, S., & Hashino, M. (2000). Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology, 227(1-4), 195-206.
    (46) Zhao, B., & Tung, Y. K. (1994). Determination of optimal unit hydrographs by linear programming. Water resources management, 8(2), 101-119.

    無法下載圖示 校內:2024-06-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE