| 研究生: |
陳怡樺 Chen, Yi-hua |
|---|---|
| 論文名稱: |
離散集群存活資料之非等比例治癒模型 Non-proportional cure models for clustered discrete survival data |
| 指導教授: |
嵇允嬋
Chi, Yun-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 離散型存活時間 、邊際方法 、集群資料 、非等比例治癒模型 、治癒個體 |
| 外文關鍵詞: | marginal regression approach, long-term survivors, clustered survival data, discrete-time survival data |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來存活分析應用於各領域中,所欲探討的事件並不一定會發生,且所觀察到的存活時間並不一定為連續型。當個體不會發生所欲探討的事件時,稱此個體為治癒個體。此外,當每一個個體所提供的存活資料為兩筆以上時,稱此個體內的存活資料為一集群資料,且同一集群內的存活資料具有相依性。但目前尚未有學者對集群離散存活資料於治癒模式下提供參數估計方法,所以本論文針對集群離散存活資料,將應用Yu和Peng (2008)所使用的邊際方法,求Zhao和Zhou (2008)所推導出非等比例治癒模式中參數的估計量。接著以模擬的方式,驗證參數估計量之一致性,且在不同設限比例與不同集群數下,探討參數估計量之表現。最後,以非等比例治癒模型探討植牙資料,利用邊際方法求得參數的估計量,以探討影響植牙發生併發症的因素。
Clustered survival data with a cure fraction arise naturally from biomedicine, econometrics and sociology studies. The mixture cure rate models have been well developed for univariate or multivariate (or clustered) continuous right censored data. When the correlation structure within clusters is not of interest, Yu and Peng (2008) used a marginal regression approach constructed estimating equations for estimating the parameters in mixture cure rate models.
Recently, Zhao and Zhou (2008) proposed discrete-time survival models with long-term survivors (cured individuals) for univariate grouped or discrete-time survival data. However, their methodologies can not be directly applied to clustered discrete-time survival data. Therefore, the marginal regression approach is proposed to construct estimating equations based on a non-proportional cure rate model. The accuracy of the estimators is examined by simulation. In addition, the implementation of the marginal approach to a dental implant study is presented.
1. Boag, J.W., (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal statistical Society B 11, 15-44.
2. Cai, J., Shen, Y., (2000). Permutation tests for comparing marginal survival functions with clustered failure time data. Statistics in Medicine 19, 2963-2973.
3. Chandler, R.E., Bate S., (2007). Inference for clustered data using the independence loglikelihood. Biometrika 94, 1-17.
4. Clayton, D., Cuzick J., (1985). Multivariate generalizations of the proportional hazards model(with discussion) Journal of the Royal Statistical, Series A 148, 82-117.
5. Farewell, V.T., (1982). The use of mixture models for the analysis of survival data with long term survivors. Biometrics 38, 1041-1046.
6. Kalbfleisch, J. D., Prentice, R. L.(1980). The statistical analysis of failure time data. Wiley Series In Probability And Mathematical Statistics.
7. Lipsitz, S. R., Dear, K.B.G., Zhao, L., (1994). Jacknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data. Biometric 50, 842-846.
8. Wen, M.J., Tseng, C.C., Lee, C.K., (2008). Life table analysis for evaluating curative-effect of one-stage non-submerged dental implant in Taiwan. Journal of Data Science 6, 591-599.
9. Yu, B., Peng, Y.(2008). Mixture cure models for multivariate survival data. Computational Statistics & Data Analysis 52, 1524-1532.
10. Zeger, S.L., Liang, K.Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121-130.
11. Zhao, X., Zhou, X. (2008). Discrete-time survival models with long-term survivors. Statistics in Medicine 27, 1261-1281.