簡易檢索 / 詳目顯示

研究生: 盧建元
Lu, Chien-Yuan
論文名稱: KrF準分子雷射退火於氧化銦鎵鋅薄膜電晶體之電性影響分析
Influence of KrF Excimer Laser Annealing on the Performance of InGaZnO Thin-Film Transistors
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 準分子雷射退火氧化銦鎵鋅薄膜電晶體
外文關鍵詞: Excimer Laser Annealing, InGaZnO, Thin-Film Transistor
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用波長為248 nm 的KrF準分子雷射退火,針對薄膜電晶體之主動層氧化銦鎵鋅的氧空缺含量進行調整,藉由脈衝雷射提供的能量提升薄膜內氧空缺數量,進而達到提升載子移動率之目的。
    在本論文中,我們主要探討改變準分子雷射的能量密度與雷射製程步驟之順序對薄膜電晶體特性的影響,設定之雷射能量密度為100 mJ/cm2~400 mJ/cm2,探討雷射退火處理於源/汲極電極沉積前後對於元件特性之影響。我們以氮化鉭作為金屬閘極材料,搭配氧化矽鉿作為閘極介電層來製作氧化銦鎵鋅薄膜電晶體。物性分析方面我們利用X 光繞射分析(XRD)與化學分析電子儀(XPS),分析氧化銦鎵鋅薄膜於不同雷射能量密度下,其晶格與內部化學鍵結之變化,結果顯示在本研究所設定之雷射能量密度區間內,氧化銦鎵鋅薄膜無明顯結晶,而其薄膜內氧空缺含量則隨著能量密度提升而增加,並在300 mJ/cm2達到高峰。於元件電性比較上,在源/汲極電極沉積後施以雷射能量密度為300 mJ/cm2處理之元件特性表現最好。電晶體之特性量測包括IDS-VDS和IDS-VGS 特性,實驗結果顯示電晶體之開關電流比約為105,另由IDS-VGS萃取出臨界電壓約為0.14 V,次臨界擺幅為92 mV/decade,而通道中的載子遷移率則由未施以雷射退火處理之12.36 cm2V-1s-1提升至17.79 cm2V-1s-1。
    由實驗結果顯示,以KrF準分子雷射退火針對氧化銦鎵鋅薄膜電晶體進行加工處理,適用於提升電晶體之載子移動率,對於未來顯示技術(AMLCD或AMOLED) 與軟性電子的應用深具潛力◦

    This study utilizes excimer laser annealing focusing on adjusting the oxygen vacancies of IGZO layer to improve TFTs’active layer. In this thesis, IGZO TFTs with Tantalum nitride (TaN) gate electrode and hafnium silicon oxide (HfSiO) gate insulator were fabricated and characterized. The effect of laser energy density and sequence being applied in the process on TFTs’ characteristics was mainly investigated. The energy density is set between 100 mJ/cm2 to 400 mJ/cm2, and the two forms of deposition processing were performed, which were as following: Condition B- Laser annealing before S/D metal contacts deposition and Condition C- Laser annealing after S/D metal contacts deposition. The physical properties and compositions of IGZO films were examined by XRD and XPS analysis. When comparing the element characteristics, the combination of the energy density of 300mJ/cm2 and condition C had the most satisfying performance characteristics after laser processing. The Ion/Ioff ratio, threshold voltage, subthreshold swing, and mobility obtained from the fabricated IGZO-TFTs were 105, 0.16V, 0.08V/dec, and 17.79cm2V-1s-1, respectively.
    In summary, our experimental results revealed that excimer laser annealing processing on IGZO thin-film-transistors (TFTs) is perfect for enhancing carrier mobility and has great potential for future commercial TFT LCD and flexible electronics.

    中文摘要 i 英文摘要 iii 誌謝 iv 目 錄 v 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1-1 TFT-LCD顯示器發展過程 1 1-2 非晶型氧化物半導體特性 2 1-3 高介電係數材料技術與選擇 8 1-4 金屬閘極的發展與材料的選擇 11 1-5 準分子雷射 14 1-6 研究動機 15 第二章 理論基礎 17 2-1 MOS電容基礎理論 17 2-2 MOS氧化層缺陷之型態 20 2-3等效氧化層厚度(EOT)及介電常數(k)之計算 23 2-4臨限電壓(Threshold Voltage,VT) 26 2-5 TFT基本操作特性 26 2-6次臨界擺幅(Subthreshold Swing, SS) 29 2-7載子移動率(Mobility, un) 30 2-8準分子雷射結晶(Excimer Laser Crystallization, ELC) 30 2-9接觸電阻的量測 32 第三章 實驗儀器設備介紹 34 3-1 製程設備介紹 34 3-1-1 射頻磁控濺鍍機 34 3-1-2 電子束蒸鍍機 37 3-1-3 準分子雷射系統 39 3-2 材料分析儀器 40 3-2-1 X光繞射儀(X-ray diffractometer, XRD) 40 3-2-2 X光光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 41 3-3 量測使用儀器 42 第四章 不同型式熱處理之氧化銦鎵鋅薄膜電晶體製作 45 4-1 氧化銦鎵鋅薄膜電晶體製作流程 46 4-2 氧化銦鎵鋅薄膜電晶體元件之管狀爐退火後處理 54 4-3 氧化銦鎵鋅薄膜電晶體主動層之雷射退火處理 54 4-4 氧化銦鎵鋅薄膜電晶體元件之雷射退火後處理 55 第五章 材料特性分析 57 5-1氧化銦鎵鋅薄膜(InGaZnO)材料特性 57 5-1-1 XRD薄膜分析 57 5-1-2 XPS薄膜分析 58 5-2 準分子雷射退火之氧化銦鎵鋅薄膜(InGaZnO)材料特性 62 5-2-1 XRD薄膜分析 62 5-2-2 XPS薄膜分析 63 5-3 氧化矽鉿薄膜(HfSiO)材料特性 65 5-3-1 XRD薄膜分析 65 5-3-2 XPS薄膜分析 66 第六章 元件特性結果與討論 67 6-1 TaN/HfSiO/Ti電容特性 67 6-1-1 電容-電壓曲線(C-V Curve) 67 6-1-2 漏電分析(J-V Curve) 68 6-2 不同型式熱處理之氧化銦鎵鋅薄膜電晶體電性量測 68 6-2-1 元件完成之管狀爐退火後處理 69 6-2-1-1 調變管狀爐退火溫度之IDS-VDS 曲線特性 69 6-2-1-2 調變管狀爐退火溫度之IDS-VGS 曲線特性 70 6-2-2 元件主動層之雷射退火處理 73 6-2-2-1 調變雷射退火能量密度之IDS-VDS 特性 73 6-2-2-2 調變雷射退火能量密度之IDS-VGS 特性 74 6-2-3 元件完成之雷射退火後處理 75 6-2-3-1 調變雷射退火能量密度之IDS-VDS 特性 75 6-2-3-2 調變雷射退火能量密度之IDS-VGS 特性 76 6-3 不同型式雷射退火之氧化銦鎵鋅薄膜電晶體電性比較 78 第七章 結論與未來研究 81 7-1 結論 81 7-2 未來研究之建議 83 參考文獻 84

    [1] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering-A new electrooptic effect in nematic liquid crystals,” Proceedings of the IEEE, Vol. 56, pp. 1162-1171, 1968.
    [2] T. P. Brody, J. A. Asars, and G. D. Dixon,“A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. on Electron Devices, Vol. 20, pp. 995-1001, 1973.
    [3] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, pp. 268-270, 2001.
    [4] S. B. Ogale, “Thin films and heterostructures for oxide for oxide electronics,” New York, NY: Springer, 2005.
    [5] C. Jagadish and S. Pearton, “Zinc oxide bulk, thin films and nanostructure,” Oxford, UK: Elsevier, 2006.
    [6] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke,M. A. Reshchikov, S. Dogan,V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., Vol. 98, pp. 041301-1–041301-103, Aug. 2005.
    [7] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., Vol. 72, pp.126501-1–126501-29, Oct. 2009.
    [8] Peardon’s Handbook of Crystallograpphic Data, pp. 2795-2796.
    [9] D. J. Leary, J. O. Barnes, and A. G. Jordan,“Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,"J. Electrochem. Soc, Vol. 129, pp. 1382-1387, 1982.
    [10] G. Neumann,“On the Defect Structure of Zinc-Doped Zinc Oxide,"Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [11] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids, Vol. 352, pp. 851–858, Jun. 2006.
    [12] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., Vol. 5, no. 7, pp. 273–288, Jul. 2009.
    [13] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Jpn. J. Appl. Phys., Vol. 45, no. 5B, pp. 4303–4308, May 2006.
    [14] Tze-Ching, Chiao-Shun Chuang, Kenji Nomura, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors,” Journal of Information Display, Vol. 9, no. 4, December 2008.
    [15] Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” App. Phy. Lett. Vol. 90, p. 212114, 2007.
    [16] Chiao-Shun Chuang, Tze-Ching Fung, Barry G. Mullins, Kenji Nomura, Toshio Kamiya, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays,” SID 08 DIGEST, 1215.
    [17] N. C. Su, S. J. Wang, and Albert Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric” IEEE Electron Device Letters, Vol. 30, No.12, pp. 1317-1319, Dec. 2009.
    [18] Keun Woo Lee, Kon Yi Heo, Sang Hoon Oh, Abderrafia Moujoud, Gun Hee Kim, Hyun Jae Kim, “Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend,” Thin Solid Films, Vol. 517, pp. 4011-4014, 2009.
    [19] G. Neumann,“On the Defect Structure of Zinc-Doped Zinc Oxide,"Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [20] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544, 1999.
    [21] V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., Vol. 89, pp. 3256-3269, 2001.
    [22] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol. 81, pp. 472-474, 2002.
    [23] S. M. Hu, “Stress-related problems in silicon technology,” Appl. Phys. Lett., Vol. 706, pp. 53-80, 1991.
    [24] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., Vol. 75, pp. 4001- 4003, 1999.
    [25] H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “Effect of Interface Oxide Layer on HfO2 Gate Dielectrics,” IEDM Tech. Dig., Vol. 34, pp. 141-142, 1999.
    [26] K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 11, pp. 2757-2776, 1996.
    [27] 王志誠,“碳化鉿金屬閘極搭配高介電係數二氧化鉿電容與場效應電晶體之研製”,國立成功大學微電子工程研究所碩士論文,2008。
    [28] Y. C. Yeo, “Metal gate technology for nanoscaletransistors-materials election and process integration issues,” Thin Solid Films, Vol. 34, pp. 462-463, 2004.
    [29] F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [30] K. A. Ellis, and R. A. Buhrman, “Boron diffusion in silicon oxides and oxynitrides,” J. Electrochem. Soc. Vol. 145, pp. 2068-2069, 1998.
    [31] H. R. Huff, L. Fabry, S. Kishino, “Semiconductor silicon 2002,” The Electrochemical Society, pp. 741-742.
    [32] 呂翰一,“248 nm KrF 準分子雷射與氮化鎵薄膜交互作用研究”,國立中央大學化學工程與材料工程研究所碩士論文,2008。
    [33] W. C. Yeh, “Study of Excimer-Laser-Processed Polycrystalline-Silicon Thin-Film Solar Cells,” Ph.D. thesis, Department of Physical Electronics, Toyko Institute of Technology, Japan 2000.
    [34] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Devices, pp. 27-28, 1980.
    [35] D. K. Schroder, “Semiconductor material and device characterization,” 2nd edition, Wiley, New York, pp. 367-369, 1998.
    [36] M. Zambuto, “Semiconductor Devices,” McGraw-Hill Book Company, Ch. 9, pp. 284-332.
    [37] A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface,” CRC Crict. Rev. Solid State Sci., 6, pp. 41-43, 1976.
    [38] M. Koyama, Y. Kamimuta, T. Ino, A. Nishiyama, A. Kaneko, S. Inumiya, K. Eguchi, and M. Takayanagi, “Careful examination on the asymmetric VFB shift problem for poly-Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the poly-Si interface with small EOT expense,” IEDM Tech. Dig., pp. 499-502, 2004.
    [39] J. S. Im and H. J. Kim, “Phase transformation mechanisms involved in Excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, pp. 1969-1971, 1993.
    [40] 周佳賢,“高穩定性的鎳/銀鋁合金薄膜應用在p型氮化鎵之歐姆接觸”, 國立中央大學化學工程與材料工程研究所碩士論文,2006。
    [41] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” Journal of Experimental and Theoretical Physic Letters, Vol. 12, pp. 329, 1970.
    [42] Sunho Jeong, “Role of Gallium Doping in Dramatically Lowering Amorphous-Oxide Processing Temperature for Solution-Derived Indium Zinc Oxide Thin-Film Transistors,” Adv. Mater., vol. 22, pp. 1346-1350, 2010.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE